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• Let D be a lens observation

STRONG GRAVITATIONAL LENS PRIOR

• We want to model the lensing galaxy Γi

• In Bayesian terms: p(Γ |D) ∝ p(D |Γ) p(Γ)

▪ data likelihood p(D |Γ) contains the physics

p(Γ) is our prior knowledge about galaxies

• This means finding a galaxy s.t.

Γi = arg max
Γ

p(D |Γ) + p(Γ)
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STRONG GRAVITATIONAL LENS PRIOR

Mandelbaum et al. (2014)
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Map-to-map translation

Denzel et al. (2025, in prep.)
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GENERATIVE DEEP LEARNING FOR GALAXIES

• Recent work:

▪ map-to-map translation of simulated galaxies

• Roadmap to a physical & plausible lens models:

▪  Physical model: map-to-map translation models

▪  Sampling halos: (random/guided) generation

▪  Applications to observations
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DEEP GENERATIVE MODELS

• match some data distribution  with a neural network 

• our models are trained on simulated galaxy samples 

▪ caveat: each simulation implements a specific feedback model 

• unconditional generation of galaxies :

• conditional generation of galaxies  including some information :

p(x) (x)pθ

Γi

ϕ

g

g ∼ (Γ|z; ϕ) where z ∼ N (0, 1)pθ

g c

g ∼ (Γ|z, c; ϕ)pθ
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WHICH GENERATIVE MODEL?

• depends on use case… for strong gravitational lensing we need:

▪ efficient, fast, good distribution coverage

▪ optionally choose Einstein radius
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WHICH GENERATIVE MODEL?

• depends on use case… for strong gravitational lensing we need:

▪ efficient, fast, good distribution coverage

▪ optionally choose Einstein radius

• : ideal, but too slowDDPMs

• : difficult to trainGANs

• : in latent space, but poor qualityVAEs

• Compromise: all of them
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LATENT DIFFUSION

Latent diffusion by Rombach et al. (2022)
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KEY INGREDIENT
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REGULARIZATION OF THE LATENT SPACE
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DIFFUSION
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CURRENT STATUS

• basic VAE version is trained

▪ regularization of latent space is difficult…

• results need fine-tuning, more elaborate objective

• some samples from recent VAE trial runs:

= + + +LVQGAN LL2 LKL/VQ LPatchGAN LLPIPS
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APPLICATION: STRONG GRAVITATIONAL LENSING

J1721+8842: The first Einstein zig-zag lens
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A lens with an interesting history

• The "polar" quad (time delays without seasonal gaps)

• First discovered in Gaia D2: 

▪ as a quadruply imaged quasar

• Confirmed PDLA by 

▪ Proximate Damped Lyman-  Absorber quasar

Lemon+ (2018)

Lemon+ (2022)

Lemon et al. (2018)

Lemon et al. (2022)

α
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Zig-zag lens

Dux et al. (2024)
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Dux et al. (2024)
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Zig-zag lens model

• Brute-force trial matching

▪ feasible due to lensing degeneracies

▪ as demonstrated by 

• Raytracing and lens matching by UZH group

Morningstar et al. (2019)

x1

x2

x3

= θD01

= θ − ( )D02 D12 α̂ x1

= θ − ( ) − ( )D03 D13 α̂ x1 D23 α̂ x2
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SUMMARY: IMPORTANCE FOR SKA?

• Good preparation for what's to come…

• VLBI & SKA-MID: Band 2/5/6

▪ extended AGN jets on sub-parsec scales

▪ CO (1–0) maps (Band 6 ~ ALMA scales)

▪ sub mJy/beam arcs (  5 mas) → nature of dark

matter

≈

McKean et al. (2015)

Hartley et al. (2019)
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