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With great data comes great responsibilities
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Credit: NASA, ESA, IRA, SKAO Credit: Norris et al., 2011; Norris et al., 2014;

Annual data production B



In the context of my PhD
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1
Radio galaxy generation and 

classification 

● FIRST Data

Diffuse cluster radio 
emission generation and 

classification

● MGCLS and 
MERGHERS data

● X-ray, optical, 
polarisation, spectral 
index

2
Early-stage analysis
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Credit: FIRST dataset, Rustige+23

Courtesy: Konstantinos Kolokythas



Morlet wavelets are sinusoids with Gaussian envelopes

iji

li
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Wavelet kernels are localised and extract features

Fourier kernel

Wavelet kernel

Real        Imag.
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Scattering transform is a cascade of wavelet transforms 
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Input image 
Order 0



Scattering transform is a cascade of wavelet transforms 
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Input image 
Order 0 Order 1



Scattering transform is a cascade of wavelet transforms 
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Order 0 Order 1 Order 2

Input image 



Multidimensional dependency require variable mixing
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Scattering 
transform

Scattering coefficients are dependent

Tensor fitting



Multidimensional dependency require variable mixing
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Scattering 
transform

Scattering coefficients are dependent Latent variables are independent

Variational AutoencoderTensor fitting



FIRST dataset is a popular radio galaxy benchmark

11Credit: FIRST dataset, Griese et al. 2022

● 2158 radio galaxies
○ FRI: 495
○ FRII: 924
○ Compact: 391
○ Bent: 348

● 300x300 pixels (greyscale)
● No noise or artefacts

FRI

FRII

Compact

Bent



Workflow pipeline for generative modelling
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Workflow pipeline for generative modelling
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Workflow pipeline for generative modelling
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Workflow pipeline for generative modelling
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Workflow pipeline for generative modelling
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Workflow pipeline for generative modelling
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Models capture general features of FRII galaxies
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Reconstructions Generations - similar Generations - free
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Galaxy10 provides less sparse sources and is easier
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Reconstructions Generations - similar Generations - free
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The VAEs capture Galaxy10 peak pixels well
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Reconstructions of Galaxy10



The VAEs capture Galaxy10 peak pixels well
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Reconstructions of FIRSTReconstructions of Galaxy10



Peak intensity is worse for irregular sources
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Compact sources FRI sourcesFRII sources



Peak intensity is worse for irregular sources
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Compact sources FRI sourcesFRII sources

Reconstructions

Generations



MSE scales with asymmetry
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Difficult reconstructions are asymmetric, faint and spread 
out
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Reconstructions

Originals



Filtering reduces risk of faint constructions
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Not filteredFiltered



Scattering transform saves training time 
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Using Dual VAE no classification improvement is made 
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𝜆=0

𝜆=1



Generated images facilitate classification of FRII and bent 
sources
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𝜆=0

𝜆=1
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Conclusions
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● VAE-generated images are smooth, faint, but 
overall realistic

● Classification performance seems to be only 
marginally improved by artificial augmentation

● More tests with different VAEs and levels of 
artificial generation will be made

● This method will soon be applied on diffuse 
cluster radio emission 



Thank you!
Questions?
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Markus Bredberg

markus.bredberg@epfl.ch



Backup slides
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Scattering transforms are iterative wavelet transforms
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Low pass filter for scattering transform
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Littlewood-Paley equality

Capture lower frequencies of signal

Conservation of energy

With low-pass filter satisfying

→ preserves norm and is therefore invertible



The scattering transform is an iterative wavelet transform
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Wavelet transform

Scattering transform



Convolutional neural networks encodes features
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Scattering transform is an iterative wavelet transform
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Order 0 Order 1

Order 2

Convolution
Low-pass filter
Wavelet



Performance improves with number of scattering 
coefficients
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VAEs learns total pixel distribution well for galaxy10
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Radial profiles are smoother and steeper than originals

40

Two plots from 
te left one. 
Logarithmic 

x-axis. 



Filtering was an important part in the generative modelling
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Larger maximum scale J leads to fainter generations 
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J=2

Value of 
brightest 
pixel

Values of 
all pixels
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Larger maximum scale J leads to fainter generations  
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J=2
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brightest 
pixel
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J=3

Larger maximum scale J leads to fainter generations 
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J=4

Larger maximum scale J leads to fainter generations 
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Filtering helps but is difficult
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Thresholds and filtering



Non-filtered vs filtered
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Not filteredFiltered



Reconstructed FRII sources
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Not filteredFiltered
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Generated FRII sources
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Not filteredFiltered
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Generated FRII sources
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Not filteredFiltered
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