Swiss Science Priorities

Jean-Paul Kneib (EPFL), Mark Sargent (ISSI Bern) Miroslava Dessauges-Zavadsky (Geneva University)

Science	Data Science and	Computing	Infrastructure	Communications &
(Astrophysics)	Simulations	Platforms		Outreach
SKAO Working Groups Extragalactic Cosmology Solar, Heliospheric and Ionospheric Our Galaxy Science Interests Intensity Mapping Cosmic Dawn & Reionization Extragalactic & Nearby Galaxies Nearby Galaxies And more This Talk + Alexandre Refregi (Unice) Co-Chair: D. Crichton (ETHZ)	Advances in computational imaging. Bayesian inference, Generative Gavamodels and deep learning rina Ciorba+Lucio Marticles in Development SPHEXA Bluebuild Karabo SEAMS And more ChaEmma Tolley ier:mma Tolley (EPFL) Co-Chair: Simon Felix (FHNW)	ognin Computing One cluster for sandbox	Development of the Mid-band 6 proof of Concept	Communications Supports

Swiss SKA SWG membership/participation

(according to the SKAO SWG definition)

SKACH - 10 institutions across Switzerland

EPFL, UniGE, ETHZ, UniZH, ISSI, UniBE, UniBAS, FHNW, ZHAW, HES-SO

Academic status of the ~100 SKACH science participants

- Professor / Research staff (permanent)
- Professor / Research staff (nonpermanent)
- Postdoc / Fellow
- PhD student

Cosmology and extragalactic Surveys

Cosmology

- LSS Synergy with Spectro Surveys
 - redshift survey/3D-map
 - BAO with HI maps (MeerKLASS, HIRAX)

- Strong+Weak lensing
- Epoch of Reionization (Bianco)

• Extragalactic

- HI mapping (Refregier)
- Continuum science

Synergy with DESI (2019-2026+) and Euclid (2023-2033)

- DESI will ultimately go down to -15 deg dec (50 Millions z)
- Euclid will have its first public data release in October 2026
- Both surveys will deliver new publications and PRs this week

Synergy with 4MOST Spectroscopic Surveys (2025-2032)

- 4MOST is the first comprehensive spectroscopic survey of the Southern Sky (SDSS+DESI North+Equatorial)
- Composed of 18 consortium sub-surveys (Cosmology redshift survey co-lead by Kneib; AGN and Cluster surveys, Waves ...)

Cross-correlation with HI mapping

- MeerKLASS (z<0.4)
- HIRAX (2<z<3 with QSOs)

Synergy with future Massive Optical Spectroscopic Surveys

 Large Scale Structure mapping of the Universe: Exploring the content of the universe (Dark Matter, Dark Energy) and other fundamental properties (Inflation models, Neutrino masses, Modified Gravity)

ESO-SKA synergies for galaxy formation & evolution

Exploration of potential for spectroscopic follow-up and characterisation of galaxies and AGN in radio surveys

Science ideas & SDC

Mark to present

HI distributions as tracers of baryonic physics

Gensior+24

Image credit: THINGS/NRAO

Understanding the radio-SFR calibration with galaxy magnetic field modelling

Molnár, Sargent+21

Radio properties of EoR galaxies

Bait+24

Different SFR calibration for EoR galaxy analogues, and radio spectrum indicative of escape fraction of ionizing photons.

Young & compact starbursts (< 10 Myr)

post-starburst (≳10 Mvr)

Age of the starburst

Gas and dust in EoR galaxies as traced by ALMA

Dessauges-Zavadsky+20

Fudamoto, Dessauges-Zavadsky+20

Participation in SDCs: Advanced algorithms for denoising and classification

SDC2

Participation in SDCs: SKA-LOW EOR instrumental observations to cosmological & astrophysical predictions

SDC3a+3b

Swiss Science with SKA precursors

Mirka to present

Swiss participation in SKA-precursors

- **MWA** Switzerland is a member since 2023
 - Solar observation
 - EOR
 - Pulsar detection (E. Tolley's talk)
 - Computing efficiency (E. Tolley's talk)

- MeerKAT through collaboration or PI programs
 - Participation in MeerKlass, MGCLS, ...
 - Pls: M. Dessauges-Zavadsky, P. Jablonka
 - Computing/Imaging (E. Tolley's talk)

- HIRAX (see A. Refregier's presentation)
 - HI science
 - Correlator, SPC

Precursor science 1 - Solar physics with the MWA

Spatial association between a solar radio burst and an active region jet

Mulay, Sharma+22

Precursor science 2 - Galaxy clusters with MeerKAT + Al

Precursor science 2 - Galaxy clusters with MeerKAT + Al

Scientific goals

Dynamics, demographics and evolution of clusters

Cluster magnetic fields

acceleration

Technical goals

Independent cluster detection

Visibility-independent

Multi-modality

Handle small, unlabelled datasets

Generate unbiased samples

Credit: M. Bredberg/E. Tolley (EPFL)

Precursor science 3 - Galaxies in Clusters with MeerKAT

High spatial resolution view of the gas

Looking for evidence of:

- shocks due to ram-pressure, tidal interactions, and subsequent perturbations, as well as asymmetries in the main bodies of the galaxies. (HR 9 arcsec beam)
- tails due to gas swept out by the filament or intra-group hot wind, or tidal tails in the outskirts of galaxies.

includes 1.4 GHz radio continuum star formation rate

expectation: $\geq N_{HI} \sim 2 \times 10^{20}$ atoms/cm²

5 hours @ 3σ with 9arcsec (~0.9 kpc) 22km/s line width, 0.22mJy/bm Smoothing the data to ~90 arcsec (9 kpc) $N_{HI} \sim 1 \times 10^{18}$ atoms/cm²

Precursor science 3 - Galaxies in Clusters with MeerKAT

Precursor science 4 - Evolution of galaxy HI content with MeerKAT Context

- Until 2020 only estimates of HI column densities measured in absorption (through the damped Lyman-alpha line) along lines-of-sight of luminous quasars and gamma-ray bursts are available at z>0.4.
- HI mass measurements of individual galaxies <u>via the 21cm emission line</u> are still very challenging at z>0 with current radio facilities because of the line faintness.
- Recently, independent teams developed stacking techniques of the HI 21cm signal of thousands of galaxies to measure the HI mass based on 2 main surveys.

MIGHTEE-HI survey with MeerKAT

Field : COSMOS # galaxies : 9'023

Redshift range: 0.23 < z < 0.49 / < z > = 0.37

Integration time: 16 h

Frequency range (L-band): 950-1050 MHz References: Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

CATz1 survey with GMRT

Field : DEEP2 # galaxies : 11'419

Redshift range : **0.74<z<1.45** / <z>=1.01

Integration time : 510 h

Frequency range : 550-850 MHz References : Chowdhury+20,22b

HI stacking: Chowdhury+20,21,22abcd

Precursor science 4 - Evolution of galaxy HI content with MeerKAT

CATz1 HI stacking results in tension with the cosmological halo mass model.

Predicting the evolution of the HI fraction (fHI) with halo mass over z=0−4 that is <u>a factor of ~3−10 smaller</u> than fHI at <z>=1.01 measured from HI stacking.

Precursor science 4 - Evolution of galaxy HI content with MeerKAT

Goal — Obtain a consensus in our understanding of the baryonic cycle between observations and model predictions.

Need of an independent 21 cm HI mass measurement from HI stacking at z~1!

Uband COSMOS-HI survey with MeerKAT

Field: 2 deg² COSMOS

galaxies : 2'514

ALMA detections (A³COSMOS) : 74 Redshift range : **0.8**<**z**<**1.5** / <**z**>=1

galaxies : 6'000

Redshift range: 0.4<z<0.8 / <z>=0.6 Integration time: 110 h (89 h on-source) Frequency range (U-band): 544-1088 MHz

PI : M. Dessauges-Zavadsky

Expected sensitivities:

- —HI line sensitivity of 36 uJy/beam (100 km/s channel)
- —Thermal RMS noise of 1.2 uJy/beam in the continuum (confusion noise of 3.1 uJy/beam)

2–3x deeper than MIGHTEE-HI and CATz1

- Proposal submitted for the MeerKAT Open Call in May 2023.
- Proposal accepted in August 2023.
- Observations started in June 2024.
- Observations ended in November 2024.

110 hours of observing time sub-divided in 21 Observing Blocks (OBs) [32K channels]: 105 TB (tar/zip) to be downloaded

The complete transfer completed this week!!!

Summary

- Swiss Interest centered on Cosmology/Extragalactic
 - Synergy with spectroscopic redshift surveys
 (DESI, 4MQST), and gravitational lensing (Euclid)
 - Strong simulation group (see SPH-EXA talk)
- Involvement in precursors (MWA, MeerKat, HIRAX)
- Strong participation in SKA Data Challenges
- Strong involvement in Data Science (see following presentations)
- Science preparation for MID-Band 6

Precursor science 4 - Evolution of galaxy HI content with MeerKAT

PI: M. Dessauges-Zavadsky / Cols: D. Schaerer, O. Bait, M. Sargent, H. Padmanabhan

MIGHTEE-HI survey with MeerKAT

Field: COSMOS # galaxies: 9'023

Redshift range: 0.23 < z < 0.49 / < z > = 0.37

Integration time: 16 h

Frequency range (L-band) : 950-1050 MHz References : Maddox+21; Heywood+22,24

HI stacking: Sinigaglia+22,24

CATz1 survey with GMRT

Field : DEEP2

galaxies : 11'419

Redshift range : 0.74 < z < 1.45 / < z > = 1.01

Integration time : 510 h

Frequency range : 550-850 MHz References : Chowdhury+20,22b

HI stacking: Chowdhury+20,21,22abcd

Precursor science 4 - Evolution of galaxy HI content with MeerKAT

PI: M. Dessauges-Zavadsky / Cols: D. Schaerer, O. Bait, M. Sargent, H. Padmanabhan

Objectives of the program:

- I. Detect the model-predicted fн by stacking 2'514 galaxies.
- II. Detect HI from the stack of 74 ALMA-detected galaxies and get the first complete HI+H2 census for the same galaxy sample in case the GMRT HI detection at z=1 is correct.
- III. Detect HI at <z>=0.6 by stacking 6'000 galaxies yielding the first observational constraint of the HI mass evolution from low redshift (MIGHTEE-HI) to cosmic noon (this Uband program) in the same COSMOS field.
- IV. Possible HI detections of individual most gas-rich galaxies at 0.4<z<1.5.
- **V.** Expected **radio continuum detections for ~10K individual galaxies** allowing to trace <u>the 800 MHz</u> <u>continuum luminosity function evolution</u>.

Future high-frequency science: MID-Band 6

Amino acids in space:

Gravitational wave science via Ka-band deep space ranging to an Uranus mission:

Zwick+24

Draft talk outline of topics - main ideas

- breadth of SKA science: overview of SKA SWG membership distribution [would you have such a slide based on the community surveys you conducted, Mirka?]
- map of CH with SKACH institutions listed, plus their main science foci
- on-going observational work:
- . galaxy clusters (Emma)
- . MeerKAT surveys of intermediate-z galaxy HI content (Mirka, Francesco), etc. (can be a couple of slides, one of of them (or a third) can add a mention here of the HI simulations work (Jindra, Robert) of HI asymmetries in galaxies as a tracer of galaxy formation processes and SF recipes)
- . MWA [which project could we highlight here? Pulsar work see, e.g., presentation at the Jan. consortium meeting in Bern?; or work on BIPP algorithm presented by Emma and January meeting]
- deep continuum surveys:
- . observational calibration, and theoretical understanding of radio emission as an SFR tracer (Jennifer, Mark)
- . ESO-SKA synergies (based on recent ESO Messenger paper(s) and highlight Swiss involvement in large spectro surveys)
- spectroscopic surveys for cosmology
- synergistic astro+computing science highlights
- Swiss participation in science data challenges (HI challenge in 2021, plus EoR challenges)
- EoR research (Michele, many others), EoR galaxies (esp. UniGE see radio SED studies of high-z analogues on prev. page; some reference to ALMA studies at high-z @ UniGE)
- high-frequency science interests (e.g., contributions to white paper SKA memo 20-01) link with MID-Band 6 development work

Draft topic ideas

- SWG membership (see stats in Mirka's and Devin's surveys presented at previous SKACH meetings)
- SKA science data challenges (Swiss involvement in SDC2 & SDC3)
- science topics:
- . on-going observational work: galaxy clusters (Emma), MeerKAT surveys of intermediate-z galaxy HI content (Mirka, Francesco), etc.
- . simulations: HI asymmetries in galaxies as a tracer of galaxy formation processes and SF recipes (Jindra, Robert)
- . gravitational waves WG (Lucio)
- . mm/ALMA surveys of distant galaxies (Mirka, Mark); of IRX-beta relations at high-z (Pascal)
- . radio SFR calibration (Mark, Jennifer S.); can be combined with a teaser of high-res continuum fields see next page
- . radio SEDs of early-Universe analogues (Omkar, Daniel)

Draft topic ideas

- science topics (cont'd):
- . resolved imaging/galaxy continuum surveys (Mark)
- . ESO-SKA synergies (Mark)
- . HIRAX, (Tianlai?)
- . MWA
- . EoR simulations (Michele, many others), EoR galaxies (esp. Geneva see radio SED studies of high-z analogues on prev. page)
- . spectroscopic surveys for cosmology (can be combined with brief mention of HI simulation work see previous page)
- . strong lensing survey in radio joint Euclid/SKA approach + VLBI follow-up (point out the limited SKA performance because of lack of long baselines in AA*)
- . cradle of life science (astrobiology Susanne; Galactic star formation Marc)
- . high-frequency science interests (e.g., contributions to white paper SKA memo 20-01) link with MID-Band 6 development work

Draft topic ideas

- Also we should add stuff from D+Cosmos/Astrosignal approach of astro+computing science - this is very relevant stuff