

Swiss SRC Net Infrastructure

Science Day with SKAO Council Pablo Fernandez 17th March, 2025

CSCS Mission

«We develop and operate a high-performance computing and data research infrastructure that supports world-class science in Switzerland»

- Located in Ticino since 1991
- A unit of the Swiss Federal Institute of Technology, ETH Zurich

 National and international collaborations in the research of new technologies for HPC with strong emphasys on innovation.

A RI connected to experiment, computational science, and the world

A RI connected to experiment, computational science, and the world

Alps is scalable

- Is the first supercomputer to enable the creation of dynamic clusters tailored to the specific needs of users while maintaining separation between them, for example:
 - Eiger for the User Lab.
 - Clariden for Al.
 - Tasna & Balfrin MeteoSwiss' numerical weather forecasts.
- Geo-distribuited hardware:
 - Lugano (CSCS) main facility
 - PUE 1.2, 100% Hydro power
 - Lausanne (EPFL)
 - Villingen (PSI) for data Archives.
 - Bologna for data access to ECMWF.

- Alps has multiple architectures:
 - 1'024 multicore nodes with 2 AMD Rome processors
 - 2'688 hybrid nodes with 4 NVIDIA Grace-Hopper superchip
 - → 10'752 processors
 - \rightarrow 6.9 PB of RAM
 - with additional nodes with special purpose
 - Liquid cooling
 - Slingshot network
- Storage:
 - 100 + 10 PB scratch disk
 - 5 + 1 PB Solid State Disk (SSD)
 - 2 tape libraries of ca. 130 PB each

Software-defined Platforms in Alps

Where we run kubernetes

Kubernetes clusters deployed on:

- Harvester
- **VMware**
- Bare metal
 - Commodity Hardware
 - HPC (CSCS Alps)

Alpernetes - Kubernetes on Alps, where Gornergrat lives

Ceph - NARET

- Ceph Reef (v18.2.4)
 - 29 PiB RAW HDD space (1836 OSDs)
 - 700 TiB RAW NVMe space (224 OSDs)
- 3 Monitor Nodes
- 51 OSD Nodes
- 3 RGW Nodes (S3)

Ceph - TOM

- Ceph Quincy (v17.2.7)
 - 11 PiB RAW HDD space (552 OSDs)
- 3 Monitor Nodes
- 23 OSD Nodes

- Erasure Coding (EC) 4+2
 - ~ 66% efficiency
 - Max 2 host failures
- 2 RBD images per pool
 - 48 TiB data on HDD
 - 2 GiB metadata on NVMe

dCache on Kubernetes

- Similar setup compared to CTAO and WLCG, all together ~14 PB usable
- Pool pods with HostNetwork
 - Public IP
- NGINX Ingress Controller
 - TCP services for doors
 - Ingress for HTTPS services
- Cilium CNI (IPv4 + IPv6)
- Node failover in case of failure
- Logs and metrics collection
 - Filebeat + Metricbeat
- Check HEPIX presentation from Elia Oggian:

https://indico.cern.ch/event/1450798/contributions/6205799/

Thank you for your attention.