

First Results of the Phoebos Simulation:

Galaxy Sizes during the Early Universe

SKAO March 2025

Floor van Donkelaar

floor.vandonkelaar@uzh.ch

In collaboration with: Lucio Mayer, Pedro R. Capelo, Darren Reed

PHOEBOS

	Run:	# DM	# gas	# tot	$m_{\rm DM}~[{ m M}_{\odot}]$	$m_{\rm gas} \ [{ m M}_{\odot}]$	ϵ [kpc]	memory [kB]	# nodes	
	${ m PhoebosHR}$	5808^{3}	3888^{3}	2.547×10^{11}	1.699×10^{5}	1.059×10^5	0.15	3.135×10^{11}		Ì
1	${ m PhoebosMR}$	2904^{3}	1944^{3}	3.184×10^{10}	1.360×10^{6}	8.473×10^{5}	0.30	3.918×10^{10}	2048	į
	${ m PhoebosLR}$	1452^{3}	972^{3}	3.980×10^{9}	1.088×10^{7}	6.778×10^{6}	0.60	4.898×10^{9}		
	${\bf PhoebosULR}$	726^{3}	486^{3}	4.974×10^{8}	8.701×10^7	5.423×10^7	1.20	6.122×10^{8}		

Subgrid physics:

- Spatially homogeneous time-dependent cosmic UV background (Haardt & Madau 2002 model).
 - solve directly for the non-equilibrium Saha equation
- Turbulent diffusion of thermal energy
- Metal diffusion
- cooling of H and He species
- cooling from the fine structure lines of metals
- Supernova feedback
 - Blast wave feedback model of Stinson et al. (2006)

PHOEBOS

Run:	# DM	# gas	# tot	$m_{\rm DM}~[{ m M}_{\odot}]$	$m_{\rm gas} \ [{ m M}_{\odot}]$	$\epsilon \ [\mathrm{kpc}]$	memory [kB]	# nodes
${ m PhoebosHR}$	5808^{3}	3888^{3}	2.547×10^{11}	1.699×10^{5}	1.059×10^{5}	0.15	3.135×10^{11}	
${ m PhoebosMR}$	2904^{3}	1944^{3}	3.184×10^{10}	1.360×10^{6}	8.473×10^{5}	0.30	3.918×10^{10}	2048
PhoebosLR	1452^{3}	972^{3}	3.980×10^{9}	1.088×10^{7}	6.778×10^{6}	0.60	4.898×10^{9}	
${\bf PhoebosULR}$	726^{3}	486^{3}	4.974×10^{8}	8.701×10^7	5.423×10^7	1.20	6.122×10^{8}	

- Spatially homogeneous time-dependent cosmic UV background (Haardt & Madau 2002 model).
 - solve directly for the non-equilibrium Saha equation
- Turbulent diffusion of thermal energy
- Metal diffusion
- cooling of H and He species
- cooling from the fine structure lines of metals
- Supernova feedback
 - Blast wave feedback model of Stinson et al. (2006)

		•		
Run Name		TNG100	TNG300	
Volume	[Mpc ³]	110.7 ³	302.6 ³	
$L_{\rm box}$	[Mpc/h]	75	205	
$N_{\rm GAS}$	-	1820^{3}	2500^3	
$N_{ m DM}$	-	1820 ³	2500^3	
N_{TRACER}	-	2×1820^3	1×2500^{3}	
$m_{\rm baryon}$	$[M_{\odot}]$	1.4×10^6	1.1×10^7	
$m_{ m DM}$	$[M_{\odot}]$	7.5×10^{6}	5.9×10^{7}	
$\epsilon_{\mathrm{gas,min}}$	[pc]	185	370	
$\epsilon_{\mathrm{DM,stars}}^{z=0}$	[kpc]	0.74	1.48	
€DM stars	[ckpc/h]	$1.0 \rightarrow 0.5$	$2.0 \to 1.0$	

PHOEBOS

Run:	# DM	# gas	# tot	$m_{\mathrm{DM}} \ [\mathrm{M}_{\odot}]$	$m_{\rm gas} [{ m M}_{\odot}]$	$\epsilon \ [\mathrm{kpc}]$	memory [kB]	# nodes
${ m PhoebosHR}$	5808^{3}	3888^{3}	2.547×10^{11}	1.699×10^{5}	1.059×10^5	0.15	3.135×10^{11}	
PhoebosMR	2904^{3}	1944^{3}	3.184×10^{10}	1.360×10^{6}	8.473×10^{5}	0.30	3.918×10^{10}	2048
PhoebosLR	1452^{3}	972^{3}	3.980×10^{9}	1.088×10^{7}	6.778×10^{6}	0.60	4.898×10^{9}	
${\bf PhoebosULR}$	726^{3}	486^{3}	4.974×10^{8}	8.701×10^7	5.423×10^7	1.20	6.122×10^{8}	

Subgrid physics:

- Spatially homogeneous time-dependent cosmic UV background (Haardt & Madau 2002 model).
 - solve directly for the non-equilibrium Saha equation
- Turbulent diffusion of thermal energy
- Metal diffusion
- cooling of H and He species
- cooling from the fine structure lines of metals
- Supernova feedback
 - Blast wave feedback model of Stinson et al. (2006)

Phoebos at Z = 8

Zooming into the cosmic star formation density

Zooming into the cosmic star formation density

→ the less strong feedback model of Phoebos seems to better fit the high redshift regime.

We are also in the upper range of the Mstar/Mhalo ratio

→ Nevertheless, in observations some Mstar might be hidden

We are also in the upper range of the Mstar/Mhalo ratio

→ AND OTHER SIMULATIONS ARE TOO LOW

Thank you for listening

Floor van Donkelaar floor.vandonkelaar@uzh.ch

