First Results of the Phoebos Simulation: ## Galaxy Sizes during the Early Universe SKAO March 2025 #### Floor van Donkelaar floor.vandonkelaar@uzh.ch In collaboration with: Lucio Mayer, Pedro R. Capelo, Darren Reed ## **PHOEBOS** | | Run: | # DM | # gas | # tot | $m_{\rm DM}~[{ m M}_{\odot}]$ | $m_{\rm gas} \ [{ m M}_{\odot}]$ | ϵ [kpc] | memory [kB] | # nodes | | |---|--------------------|------------|------------|------------------------|-------------------------------|----------------------------------|------------------|------------------------|---------|---| | | ${ m PhoebosHR}$ | 5808^{3} | 3888^{3} | 2.547×10^{11} | 1.699×10^{5} | 1.059×10^5 | 0.15 | 3.135×10^{11} | | Ì | | 1 | ${ m PhoebosMR}$ | 2904^{3} | 1944^{3} | 3.184×10^{10} | 1.360×10^{6} | 8.473×10^{5} | 0.30 | 3.918×10^{10} | 2048 | į | | | ${ m PhoebosLR}$ | 1452^{3} | 972^{3} | 3.980×10^{9} | 1.088×10^{7} | 6.778×10^{6} | 0.60 | 4.898×10^{9} | | | | | ${\bf PhoebosULR}$ | 726^{3} | 486^{3} | 4.974×10^{8} | 8.701×10^7 | 5.423×10^7 | 1.20 | 6.122×10^{8} | | | #### Subgrid physics: - Spatially homogeneous time-dependent cosmic UV background (Haardt & Madau 2002 model). - solve directly for the non-equilibrium Saha equation - Turbulent diffusion of thermal energy - Metal diffusion - cooling of H and He species - cooling from the fine structure lines of metals - Supernova feedback - Blast wave feedback model of Stinson et al. (2006) ## **PHOEBOS** | Run: | # DM | # gas | # tot | $m_{\rm DM}~[{ m M}_{\odot}]$ | $m_{\rm gas} \ [{ m M}_{\odot}]$ | $\epsilon \ [\mathrm{kpc}]$ | memory [kB] | # nodes | |--------------------|------------|------------|------------------------|-------------------------------|----------------------------------|-----------------------------|------------------------|---------| | ${ m PhoebosHR}$ | 5808^{3} | 3888^{3} | 2.547×10^{11} | 1.699×10^{5} | 1.059×10^{5} | 0.15 | 3.135×10^{11} | | | ${ m PhoebosMR}$ | 2904^{3} | 1944^{3} | 3.184×10^{10} | 1.360×10^{6} | 8.473×10^{5} | 0.30 | 3.918×10^{10} | 2048 | | PhoebosLR | 1452^{3} | 972^{3} | 3.980×10^{9} | 1.088×10^{7} | 6.778×10^{6} | 0.60 | 4.898×10^{9} | | | ${\bf PhoebosULR}$ | 726^{3} | 486^{3} | 4.974×10^{8} | 8.701×10^7 | 5.423×10^7 | 1.20 | 6.122×10^{8} | | - Spatially homogeneous time-dependent cosmic UV background (Haardt & Madau 2002 model). - solve directly for the non-equilibrium Saha equation - Turbulent diffusion of thermal energy - Metal diffusion - cooling of H and He species - cooling from the fine structure lines of metals - Supernova feedback - Blast wave feedback model of Stinson et al. (2006) | | | • | | | |--------------------------------------|---------------------|-----------------------|---------------------|--| | Run Name | | TNG100 | TNG300 | | | Volume | [Mpc ³] | 110.7 ³ | 302.6 ³ | | | $L_{\rm box}$ | [Mpc/h] | 75 | 205 | | | $N_{\rm GAS}$ | - | 1820^{3} | 2500^3 | | | $N_{ m DM}$ | - | 1820 ³ | 2500^3 | | | N_{TRACER} | - | 2×1820^3 | 1×2500^{3} | | | $m_{\rm baryon}$ | $[M_{\odot}]$ | 1.4×10^6 | 1.1×10^7 | | | $m_{ m DM}$ | $[M_{\odot}]$ | 7.5×10^{6} | 5.9×10^{7} | | | $\epsilon_{\mathrm{gas,min}}$ | [pc] | 185 | 370 | | | $\epsilon_{\mathrm{DM,stars}}^{z=0}$ | [kpc] | 0.74 | 1.48 | | | €DM stars | [ckpc/h] | $1.0 \rightarrow 0.5$ | $2.0 \to 1.0$ | | ## **PHOEBOS** | Run: | # DM | # gas | # tot | $m_{\mathrm{DM}} \ [\mathrm{M}_{\odot}]$ | $m_{\rm gas} [{ m M}_{\odot}]$ | $\epsilon \ [\mathrm{kpc}]$ | memory [kB] | # nodes | |--------------------|------------|------------|------------------------|--|---------------------------------|-----------------------------|------------------------|---------| | ${ m PhoebosHR}$ | 5808^{3} | 3888^{3} | 2.547×10^{11} | 1.699×10^{5} | 1.059×10^5 | 0.15 | 3.135×10^{11} | | | PhoebosMR | 2904^{3} | 1944^{3} | 3.184×10^{10} | 1.360×10^{6} | 8.473×10^{5} | 0.30 | 3.918×10^{10} | 2048 | | PhoebosLR | 1452^{3} | 972^{3} | 3.980×10^{9} | 1.088×10^{7} | 6.778×10^{6} | 0.60 | 4.898×10^{9} | | | ${\bf PhoebosULR}$ | 726^{3} | 486^{3} | 4.974×10^{8} | 8.701×10^7 | 5.423×10^7 | 1.20 | 6.122×10^{8} | | #### Subgrid physics: - Spatially homogeneous time-dependent cosmic UV background (Haardt & Madau 2002 model). - solve directly for the non-equilibrium Saha equation - Turbulent diffusion of thermal energy - Metal diffusion - cooling of H and He species - cooling from the fine structure lines of metals - Supernova feedback - Blast wave feedback model of Stinson et al. (2006) #### Phoebos at Z = 8 ### Zooming into the cosmic star formation density #### Zooming into the cosmic star formation density → the less strong feedback model of Phoebos seems to better fit the high redshift regime. We are also in the upper range of the Mstar/Mhalo ratio → Nevertheless, in observations some Mstar might be hidden We are also in the upper range of the Mstar/Mhalo ratio → AND OTHER SIMULATIONS ARE TOO LOW # Thank you for listening Floor van Donkelaar floor.vandonkelaar@uzh.ch