

THE COMPUTATIONAL CHALLENGE

52,000 core hours (13,000 hours for imaging) ~6 days to image ~8 hour observation

Ye+ 2023, arXiv:2309.16560 0.3" 1.2" 120 - 80 ntensity [mJy - 20 250,000 core hours for 0.3" field

THE COMPUTATIONAL CHALLENGE

THE COMPUTATIONAL CHALLENGE

~40% Computational/theoretical astrophysics (simulations) ~30% radio astronomy data reduction ~30% optical & infrared

A. Stevens et al., "The imperative to reduce carbon emissions in astronomy" Nature Astronomy 2020

> For reference, per-capita carbon emissions*....

in Australia: 17 tCO₂/yr

in Switzerland: 4.7 tCO₂/yr

*https://www.worldometers.info/co2-emissions/co2-emissions-per-capita/

... 8 SOLUTIONS

High Performance Computing

GPU computing & parallelism (the focus of this talk)

Quantum computing

 Applications of the Quantum Fourier Transform for imaging (<u>Brunet, Tolley, et</u> al,2024)

Artificial intelligence

- For image reconstruction (<u>Tajja, Aghabiglou, Tolley, et al, 2025</u>)
- For data discovery (<u>Misha, Tolley, et al, 2025</u>)
- Physics-informed neural networks for cosmological simulations (<u>Korber</u>, Tolley, Bianco, Kneib, 2023)

LIGHTNING OVERVIEW

Emma Tolley: Assistant Professor in the laboratory of Astrophysics and leader of the radio astronomy HPC group

Piyush Panchal

HPC development of MWA pulsar search pipeline

Swiss **SKA Regional center** platform development (See Rohini's talk!)

Pablo Llopis

Carolina Lindqvist

Hamza Chouh

Adrien Devresse

SKAO contract for co-design of the science data processor HPC development of radio imaging software

> Workflow parallelism & data formats

Etienne Orliac

BENCHMARKING

Batch preprocessing pipeline I/O usage (single node, 8 tasks)

A NEW DATA FORMAT?

• MSv2: the familiar CASA tables data format

 MSv4: Zarr storage based on labeled n-dimensional arrays (xarray) datasets, under development as part of the ppensource Python project XRADIO (Xarray Radio Astronomy Data IO)

A NEW WORKFLOW STRATEGY?

 2.10^{1}

Plot by E. Orliac

10

MPI ranks / Dask-CUDA workers (H100) [-]

128

Emma Tolley EPFL 17 March 2025 SKACH Science Meeting

Plots by S. Frasch (CSCS)

Directly reconstruct images on the celestial sphere using 3D type-3 non-uniform FFT (NUFFT)

Can use domain partitioning to take advantage of sparse input & output domains, reduce memory consumption, improve performance

Bluebild Imaging++ (BIPP): CPU & GPU implementation with CUDA & HIP, funded by PASC 2021-2025, collaboration between EPFL & CSCS. Now published: Tollev et al. i.ascom.2024.100920

HPC IMPLEMENTATION

Process	Time [s]	% Total
Total	45.57	100.0
Parameter estimation	4.42	9.7
Reading visibilities	1.91	4.2
Processing	2.50	5.9
Eigen decomposition	0.60	1.3
Imaging	41.03	90.0
Reading visibilities	1.84	4.0
Processing	39.19	86.0
Eigen decomposition	0.50	1.1
Other	0.12	0.3

Continuing to improve the 3D NUFFT with a dedicated HPC library **neonufft**

Bluebild Imaging++ (BIPP): CPU & GPU implementation with CUDA & HIP, funded by PASC 2021-2025, collaboration between EPFL & CSCS. Now published: Tolley et al. i.ascom.2024.100920

SPECIALIZED HARDWARE

Specialization for Energy

Dataflow Design Paradigm

Rubén Rodríguez Álvarez, Denisa Constantinescu, Miguel Peón-Quirós (EPFL)

PULSAR SEARCH

- 4 PB data collected in SMART Pulsar survey (MWA)
- Shallow processing (~10% data) using Presto: ~300K CPU hours
- Problem: Full processing using Presto in ~23 years
- Motivation: Pulsars help studying extreme physics
- Goal: GPU acceleration to enable full/faster processing

PULSAR SEARCH

Fourier frequency (w)

	Dedisp (FDD, GPU)	PrestoZL (TDD, GPU)	Presto (TDD, CPU)
1000 DMs	28.95 s	> 139.77 s (800 DM)	8 hrs+
500 DMs	23.29 s	98 s	4.75 hrs

Kuma (H100): 15000 DMs, 116.223 s!

WHAT'S NEXT?

RFI FROM SATELLITES

Expected starling satellites visible in a 20s interval for the SKA Engineering Development Array 2

- Intentional radio emission (communications, remote sensing, radionavigation, etc.)
 - Regulated by the ITU-R (2020) Radio Regulations (RR)
 - Starlink assigned transmission frequencies:10.7-12.7 GHz
- Unintended electromagnetic radiation (UEMR) generated by electrical circuits on the satellite
 - Not explicitly regulated at the ITU-R level
- Reflections of radio emission from terrestrial or other external sources

UEMR FROM STARLINK SATELLITES

Emma Tolley

UEMR FROM STARLINK SATELLITES

Evaluating the impact on science use cases... see talk at upcoming 2025 SKAO General Science Meeting in Görlitz, Germany

Plots by N. Cerardi (EPFL)

SUBTRACTING SATELLITE RFI

Can we **fit for** and **subtract** the RFI components and recover astrophysical signal instead of discarding data?

$$\widetilde{V}_{pq}(t) = G_p(t) \left(V_{pq}^{\mathsf{AST}}(t) + V_{pq}^{\mathsf{RFI}}(t) \right) G_q^H(t)$$

tabascal code developed by C. Finlay et al.: arXiv: 2301.04188

IMAGING WITH ESTIMATED VISIBILITIES

Mean RFI Amplitude: 369.1 Jy

C. Finlay et al. arXiv: 2301.04188

Simulated observation with one satellite and one frequency channel

- Can we use Bayesian forward modeling to fit and subtract satellite signal?
 - Need to demonstrate that this scales to the problem size of the SKA & works on real data
 - Beginning to work on HPC implementation of tabascal, funded by the Swiss Platform for Advanced Scientific Computing (PASC) & EPFL (2025-2028)
 - Applying to real observations, extending model to multi-frequency, etc.

IN SUMMARY

- Team is working a wide range of topics in HPC & computing for radio astronomy:
 - SRCNet platform development
 - Benchmarking of SKAO pipelines
 - Exploring new data formats and new workflow management strategies
 - Development and acceleration of new algorithms for imaging and pulsar searching
- So far getting excellent performance from GPUs over CPUs, cannot discount the power of accelerators! Should be seriously considered for SDP procurement