

UN/SKAO Workshop on Dark and Quiet Skies for Science and Society 2025

Pitch Talk – Looking to the Future and Learning from Other Sectors

Space Debris-Induced Night Sky Brightness: Quantifying Model Uncertainties and Observational Impacts

Dr. Stefan Wallner

ICA, Slovak Academy of Sciences

Dept. of Astrophysics, University of Vienna

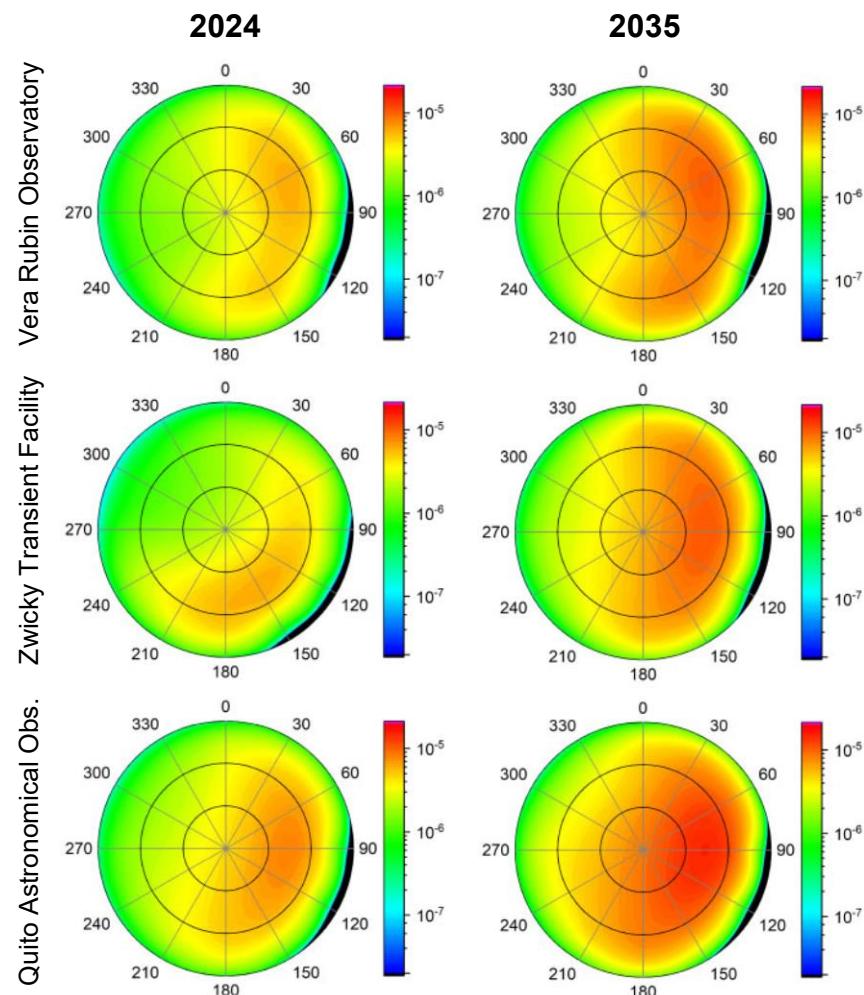
The Hidden Threat

Beyond satellite streaks: diffuse skyglow from space debris

The Problem

Satellite fragmentation creates millions of sub-millimeter particles that collectively scatter sunlight, producing a measurable diffuse glow across the entire night sky.

Current Impact (2024)


3–8 $\mu\text{cd}/\text{m}^2$

Additional sky brightness from LEO debris

Projected (2035)

Up to 19 $\mu\text{cd}/\text{m}^2$

Threefold increase over the decade

The Uncertainty Crisis

Order-of-magnitude disagreement between debris models

100× difference in predictions for particles <3mm

ESA MASTER vs NASA ORDEM debris models fundamentally disagree on small particle populations

ESA MASTER

Semi-deterministic fragmentation model

2024 NSB Contribution:

29.7–30.3

mag/arcsec²

2035 Projection:

28.7–29.5

mag/arcsec²

~3–8% above natural levels

NASA ORDEM

Bayesian + observational calibration

2024 NSB Contribution:

26.2–26.8

mag/arcsec²

2035 Projection:

25.2–25.8

mag/arcsec²

~5–20% above natural levels

This uncertainty spans 25× in sky brightness—preventing informed policy decisions

Consequences & Solutions

Observational impacts and the path forward

Signal-to-Noise Degradation

7–20%
decrease by 2035

For faint sources (27 mag/arcsec²) at 8-m class telescopes

Required Exposure Increase

8–34%
longer observations

To maintain constant sensitivity—directly impacts survey efficiency

Differential impact: Large facilities observing faint sources most affected. Smaller telescopes with brighter sky-limited magnitudes relatively unaffected.

11-year solar cycle modulation: NSB varies 20–30% between solar maximum (enhanced atmospheric density → faster orbital decay) and minimum

Required Action

To regulate debris accumulation effectively, we must:

- Resolve model uncertainties through enhanced tracking or in-situ measurements
- Establish international debris characterization standards
- Develop evidence-based policies for satellite design and end-of-life disposal

Contact

Dr. Stefan Wallner

ICA, Slovak Academy of Sciences &
Dept. Astrophysics, University of Vienna

stefan.wallner@savba.sk

This work was supported by the Slovak Research and Development Agency under contract No: APVV-22-0020, APVV-24-0627 and ESA Contract No. 4000139802/22/NL/SC. Computational work was supported by the Slovak National Grant Agency VEGA (grant No. 2/0010/20). This work is part of the project for which the financial means was funded by the European Union's Horizon 2020 Research and Innovation Programme on the basis of the Grant Agreement under the Marie Skłodowska-Curie funding mechanism No. 945478 – SASPRO 2 / Proj. Number 1384/03/01.

