

Standards approach to satellite interference

Andy Lawrence al@roe.ac.uk

UNOOSA/SKAO DQS meeting

Vienna Dec 9-11 2025

ITU does this
for radio interference
can we do it for optical brightness?
→ report to UKSA*

*Edinburgh
Imperial
Eutelsat
3S Northumbria*

cf ESSI **
but needs debate by
a like minded gang

*Astronomers
Builders
Operators
Policy makers*

* UK Space Agency
** Earth-Space Sustainability Initiative

Beyond Seventh Magnitude

IAU CPS* recommend V>7
now mandated in
French Space Act
and draft EU Space Act

but
ALL satellites cause streaks
need
per-mission not just per-satellite

- streaks per sq.degree per unit time
- probability of glints
- multi-wavelength behaviour

could allow for flexibility
eg some bright if most faint

study and debate needed

agreed metrics of astronomical damage
trade-off studies: mass budget, thermal issues, operations

* International Astronomical Union Center for Protection of the Dark and Quiet Sky

Infrastructure and tools

Public and private
brightness prediction models

eg Lumos-SAT
Glint Evader
Eutelsat Tool

Standardised satellite
structure specification

surfaces, sizes,
composition, orientation

Public and private
BRDF* databases

i.e. companies trust
agency with proprietary
data, and regulators trust
agency certification

Trusted certification
agencies

to calibrate tools and
confirm post launch
compliance

Validation programme

*Bidirectional Reflectance Distribution Function