

S5: The Zero Debris Community Effort Lessons Learned

Siegfried Eggli

University of Illinois / IAU CPS
eggli@illinois.edu

Multiple Channels for Interaction and Exchange

Image credits: SpaceX / NSF DOE Rubin Observatory

International

- UNCOPUOS: Group of Friends for the Dark and Quiet Skies for Science and Society
- ITU (e.g. Equivalent Power Flux Density method for studying constellation impact)
- IAU CPS (I&T Hub, Astronomer Guides, SatHub observing campaigns)
- **Zero Debris Charter + Technical Booklet (ESA + 180 signatories)**
- EU Space ACT / CRAF / Space Label...

National

- United States imposes coordination with NSF to obtain FCC license
- Licensing conditions for operators in South Africa (ongoing discussions)
- UK Earth Space Sustainability Initiative
- Switzerland Space Sustainability Rating / Spacetalk
- US AIAA Space Sustainability WG / AAS COMPASSE
- NRAO / Rubin Observatory / SKAO / NOIRLab ...

Challenges to Action

Awareness

Technology

Motivation

Acknowledging the Problem: ESA Zero Debris Requirements

IAU NOIR Lab SKAO

Applicable orbits

Guarantee
successful disposal

Improve orbital
clearance

Avoid in-orbit
collisions

Avoid internal
break-ups

No intentional
release of space
debris

Limit on-ground
casualty risk

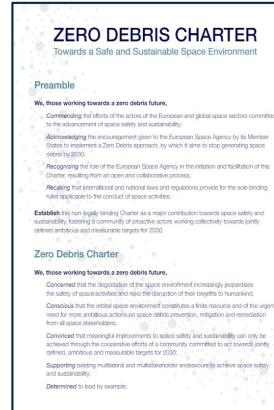
Guarantee dark and
quiet skies

*Assessment and
mitigate impacts on
ground astronomy*

Zero Debris: A Space Community Approach

Where we want to be by 2030?

Zero Debris Charter


Published in
Oct 2023

Signature
ceremonies
ongoing

182 signatories
as of September 2025

Zero Debris: A Space Community Approach

Where we want to be by 2030?

Zero Debris Charter

Published in
Oct 2023

Signature
ceremonies
ongoing

182 signatories
as of September 2025

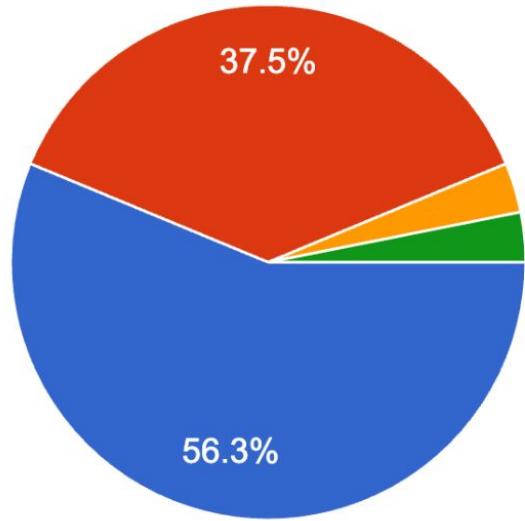
How to get there?

Zero Debris Technical Booklet

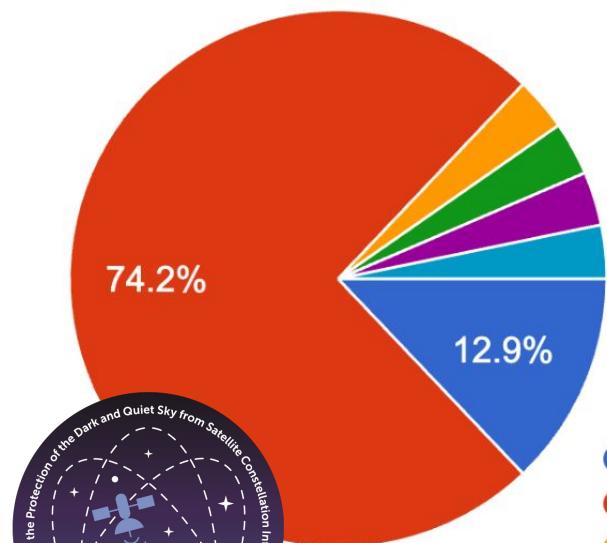
How can the booklet be useful?

As a support for

- Defining **sustainability strategy** and **priorities**
- Engaging with the community for **collaboration**
- Identifying **contributions** and **needs**


1st issue
released
on 15
January
2025

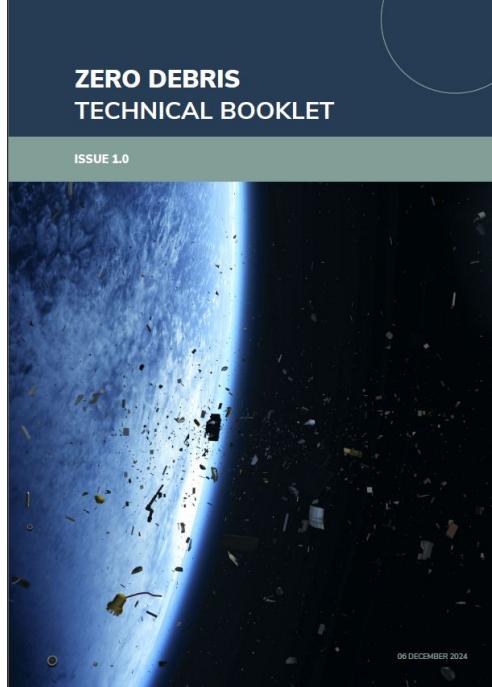
ZD Week – June 2025


Zero Debris Technical Booklet Community

Primary Affiliation

- Industry
- Academia
- Legal
- Independent R&D Engineer

Member of the IAU CPS?



IAU NOIR Lab SKAO

- Yes
- No
- not yet
- Waiting for acceptance
- not a member of CPS but I am Fellow of the UK Royal Astronomical Society
- I have applied

The Zero Debris (ZD) Technical Booklet

- The Booklet serves as a **resource to support the Zero Debris Community** in directing its resources **towards research and future technology developments**.
- The Booklet is **technically focused, non-binding, and collaborative**.
- **Not “owned” or written by ESA**, and participation is not restricted to European space actors

Introduction

- Background
- Scope

Glossary

- Description of terms used

Technical Chapters

- Needs, Key Enablers and Solutions for Zero Debris by 2030

Vision for a Circular Economy in Space



- Long-term Vision

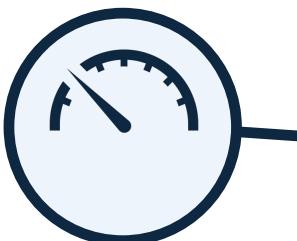
ZD Technical Booklet Chapter 6

6. UNDERSTAND AND MITIGATE ADVERSE CONSEQUENCES OF SPACE OBJECTS AND DEBRIS

6.2. PROTECT DARK AND QUIET SKIES

- A. Prediction and mitigation of the **unintended emission** from space objects and debris to protect the integrity of astronomical observations
- B. Prediction of **interference** caused by intended emissions

Select Key Enablers:


- Development of a set of **technical guidelines** for the design, manufacturing and operation of spacecraft based on the **recommendations of the IAU**
- **Sharing of Operational data** such as brightness data, antenna diagrams, orbital profiles, and predicted, real-time, and historical orbital elements
- **Assessment and modelling** of unintended electromagnetic emissions during all project phases
- **Development and choice of materials, technologies and operational concepts** minimizing unintended emissions of spacecraft
- **Solutions to maintain trackability** while reducing unwanted spacecraft emission
- **Characterization of potential radio interference into protected radio astronomy bands** from adjacent transmissions

The ZD Technical Booklet Issue 2.0

Authorship
Imprint with list of contributing organizations

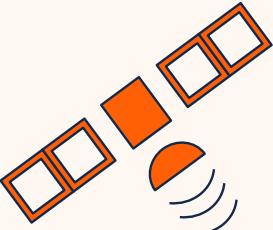
Metrics
How to track progress on the Booklet

Outreach
Raising awareness and increasing uptake

Database
Online library of needs, solutions, and key enablers

Prioritization
What is most urgent to work on first?

Upcoming task



Mapping
Who is working on what?

Current focus

Technology Examples for Impact Mitigation

Dielectric Mirrors

Non-reflective Materials

Operational Data Sharing:
Satellite Attitude
Modification + EM Silencing

Satellite Impact
Assessment

Satellite Brightness and
EM Emission Modeling

Operational Data Sharing:
Observatory Satellite Dodging

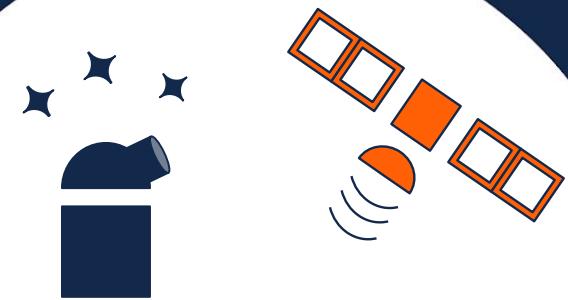
Zero Debris Technical Booklet

Lessons Learned

- Many industry partners want to take action
- Some mitigations methods are successful / some constellations very close to IAU recs.
- Some are (still) not aware of the problem
- Most do/did not know how to get started
- Frequent communication between astronomers and space industry is crucial to developing solutions

Motivation is Key

- The EU Space Act has so far been most successful in engaging industry
- ESA funding also helped
- Ensures industry is proactive in understanding and solving problems
- Levels playing field
- Regulations do not have to be “static”


Voluntary Industry Action on Dark and Quiet Skies

(Prospect of) Regulatory Action

Thank you!

**Identify Existing
Technology +
Tech Gaps**

**Enable
Coexistence**