

CASKAR: A CASPER concept for the SKA phase 1 Signal Processing Sub-system

Francois Kapp, SKA SA

Outline

- Background
- Technical
 - Architecture
 - Power
- Cost
- Schedule
- Challenges/Risks
- Conclusions

Background

CASPER Technology MeerKAT

Who is CASPER?

- Berkeley Wireless Research Center
- UC Berkeley Radio Astronomy Lab
- UC Berkeley Space Sciences Lab
- Karoo Array Telescope / SKA SA
- NRAO Green Bank
- NRAO Socorro
- Allen Telescope Array
- MIT Haystack Observatory
- Harvard-Smithsonian Center for Astrophysics
- Caltech
- Cornell University
- NAIC Arecibo Observatory
- UC Berkeley Leuschner Observatory
- Giant Metrewave Radio Telescope
- Institute of Astronomy and Astrophysics, Academia Sinica
- National Astronomical Observatories, Chinese Academy of Sciences
- CSIRO Australia Telescope National Facility
- Parkes Observatory
- Center for Astrophysics and Supercomputing, Swinburne University of Technology

- Nancay Observatory
- Oxford University Astrophysics
- Metsähovi Radio Observatory, Helsinki University of Technology
- New Jersey Institute of Technology
- West Virginia University Department of Physics
- University of Iowa Department of Astronomy and Physics
- Ohio State University Electroscience Lab
- Hong Kong University Department of Electrical and Electronic Engineering
- Hartebeesthoek Radio Astronomy Observatory
- INAF Istituto di Radioastronomia, Northern Cross Radiotelescope
- University of Manchester, Jodrell Bank Centre for Astrophysics
- Submillimeter Array
- NRAO Tucson / University of Arizona Department of Astronomy

CASPER workshop 2010

Where is CASPER?

What CASPER does

SQUARE KILOMETRE ARRAY

- Standard Hardware
 - Limited number of platforms
- Standard Libraries
 - "Rapid application" design flow
- Community Support
 - Tutorials
 - Workshops and training sessions
 - Some "canned" applications
- Interface standardisation: SPEAD

For Example ...1

For Example ...3

For Example ...4

Where is CASPER going?

SQUARE KILOMETRE ARRAY

- Array of 64 x 13.5m offset Gregorian Dishes
- Feed indexer:
 - 590 MHz 1.015 GHz
 - 1 GHz 1.75 GHz
 - 8 14.5 GHz
- MeerKAT Large Survey Proposals -> Concept Design -> CoDR -> Specification -> PDR

MeerKAT Dish

MeerKAT Signal Processing

- D/F processing "at" feed, incl. Raw transient buffer
- Integrated RF design of Feed-Receiver-Digitiser
- Digital Fibre to KAPB
- "CASPER" ROACH3 processing cluster in KAPB
- 40GbE (or Infiniband) interconnect

- Resource Shared: Continuum, Spectral Line and Transient Search Beam Former modes
- Time Shared: Pulsar timing
- Redundant hardware for reliability (keep maintenance simple, infrequent)
- Antenna based hardware packaged for rugged environment and RFI
- Remote operation

MeerKAT DBE

MeerKAT vs SKA phase 1 (Dish)

Specification	MeerKAT	SKA Phase 1
Number of Antennae	64	250
Dish diameter	13.5m	15m
Min Baseline	29m	?
Max Baseline	8km	<200km
Number of Feeds/Antenna	3	2
Feed 1	590 – 1015 MHz	450 – 1000 MHz
Feed 2	1 – 1.75 GHz	1 – 2 GHz
Feed 3	8 – 14.5 GHz	Up to 10 GHz (Ph 2)
Instantaneous Bandwidth	1 GHz – 2 GHz	1 GHz
Spectral Resolution (Continuum)	200 kHz	7.5 kHz
Spectral Resolution (Line)	1.8 kHz x 20k	1 kHz

CASKAR Dish Architecture

CASKAR AA Architecture

Power: Dish

Total: 428kW

Power: AA (Per Beam)

Total: 6.2kW

Costing: Dish System Boundary

Cost: Dish

Total: 24.6MUSD

Cost: AA (Per Beam)

Total: 289kUSD

CASKAR Schedule

KEY:

EOL/Decommissioning Production/Operation Development

Exploring the Universe with the world's largest radio telescope

N

Number of ROACHx vs N

Scaling Up?

Challenges/Risks

- Switch
- Samplers
- ROACH4
- Digital Fibre
- Power

- Collaborative model with significant momentum
- Shared Development
- Flexibility
- Easy Upgrade/Part of Maintenance
- CASPER library model enables R.A.D.
- Near-commodity hardware
- Re-purpose hardware
- CASPER builds skills

- Phase 2 still very expensive
- Aperture Array specification is a challenge

- The CASPER train is on track
- Everybody is welcome on board

• Questions?