

PAF Beamformer John Bunton, CSIRO

Beamforming task

- At the focus of dish illumination of phase array depends on look angle
 - See examples
- Detect signal from phased array and sum
 - Approx. conjugate match
- Do this for all look angles (beams)
- Weights different from beam to beam and are frequency dependent
 - Focal spot size proportional to wavelength

Exploring the Universe with the world's largest radio telescope

Chequer board array example

- Currents on a chequerboard array a the focus of 12m dish at 1.25GHz. Array element spacing 9cm.
- Illuminated by a point source
 ~1degree off boresight.
- Signal from single port does give a beam but
 - Poor aperture effeciency
 - High spill over
 - Noise and power coupling to adjacent ports
- Digital beamforming
 - improves A/T
 - Control of sidelobes
 - Control of beam shape
 - Beam steering

Time Domain Beamforming

- Beam weighted sum of all elements (some zero)
- Weighting is frequency dependent = filter h(t)

$$Beam(t) = \sum_{j \text{ over all ports}} h_j(t) **v_j(t)$$

- Compute load proportional to
 - No beams B
 - No elements N
 - Bandwidth BW
 - No filter taps (>40) T
- Multiplies/s ~2.5 B.N.BW.T

Frequency Domain Beamforming

- Decimate data into frequency channels
 - Must do this for FX correlator in any case
 - Multiplies/s ~40 N.BW
- Single complex weight per frequency channel
 - Beam forming ~5 B.N.BW Multiplies/s
 - No beams B
 - No elements N
 - Bandwidth BW

Comparison

- Equality time and frequency compute load when
 2.5 B.N.BW.T = 40 N.BW+5 B.N.BW
 No taps T = 16/B + 2
- No beams B is the order of 50-100 (single pol.)
 25-50 Dual polarisation beams
- Allowable no of taps for equal compute load is ~2, need more than 40.
- Use Frequency Domain Beamforming

Other Compute Requirement

- Calculation of weights require Array
 Covariance Matrix
 - Multiplies/s ~10BW. N²
 - Could dominate
 - But do fraction of time samples and frequency channels at any time ~20% of beamforming
- ADC statistics, Power spectrum, Capture time sequences ...

Beamformer Architecture (Cross connect)

- For SKA Phase 1 probably have multiple beamformer boards
- Pass data through filterbank and distribute part of the bandwidth to each board

Exploring the Universe with the world's largest radio telescope

Alternative Architecture (Ring)

- Connect beamformer in ring
- Same amount of input data

But data for all beams must be transported

between boards

UseCross Connect

Exploring the Universe with the world's largest radio telescope

Example – ASKAP Processing

 Note fine filterbank, coarse delay, transient buffer, fringe stopping considered part of correlator here

Data Transport form PAF

- Two options: Coaxial cable or Fibre
- Coaxial cables expensive, bulky and lossy
 - Used in ASKAP and APERTIF
 - Transport signal to ground level
- Fibre is relatively cheap, low loss and easy to install
 - Until recently transmitters too expensive in weight or \$\$. But this is changing.

Fibre data transport (Digital)

- Target solution
 - 100-200 analogue inputs means multiple boards
 - ASKAP PAF digitiser shown ~140kg
 - Currently digitising system is too large and heavy to install in PAF
 - Will get small and lighter with time
 - Ideally ADC in PAF
- Small low power ADC with simple connection to optical transmitter needed
 - Expected for Phase 2
 - High degree of uncertainty for Phase1

Fibre data transport (RF over Fibre)

- RF over Fibre has normally used external modulator
 - Very good performance
 - But cost is high
- Directly modulate DFB laser have brought cost down to reasonable values
 - Limitation high second order modulation,
 - At most one octave bandwidth
 - Bandwidth similar to that of the proposed octave band feeds
 - Small size and low power allows installation in PAF
- Assume this is the solution used for SKA Phase 1

Bandwidth and location

- RF over Fibre uses single mode fibre.
 - Transport for more than 10km (central site?)
- PAF say 1.5 0.6GHz need two octave bands
 - One is 1.2-0.6GHz
 - Some transition zone needed
 - assume correlator and beamformer 0.5GHz bandwidth
- Octave band direct sample in second Nyquist zone of ADC
- Second band would be 1.5 to 1.0GHz

Beamformer requirements

- 500MHz bandwidth, 36 dual pol beams, 100 element per single pol beam
- Compute load
 - 500MHz x 72 single pol beams x100 complex MACs/beam x 4 multiplies/Complex MAC
 - 14.4T mult/sec plus over head ~20Tmult/s
- FPGA in 2016-17 has 8000 multipliers at 0.45GHz
 - 3.6T mults/s per FPGA 6 FPGAs needed
 - Two boards to implement beamformer
- Smaller lower performance PAF fewer FPGAs

ADC/Filterbank

- ADC system has 100-200 optical RF inputs.
- Assume quad ADC = 25 to 50 ADCs
 - Say, 5 Quad ADC per board
 - 5 to 10 ADC boards
- Optical link to beamformer needed
 - Use FPGA to packetise data and drive optical TX
 - Two links needed one per beamformer board
- Use same FPGA for filterbank and each link carries data for half the bandwidth
- Filterbank for 1.6GHz sample rate ~32Gmultiplies/s
 - For 200 elements 6.4Tmuliplies/s = 10 small FPGAs

Beamformer System

- ADC/coarse filterbank board takes in ~20 optical RF and filters to 1MHz bands
 - 5-10 boards
- Half BW to each BF
- 20 inputs x 250MHz x 16bits/Hz = 80Gb/s
 - Single 12 fibreSNAP12 optical TXhas 12x8.5Gb/s =100Gb/s
- Each BF receives 5-10
 12 fibre ribbons

Exploring the Universe with the world's largest radio telescope

Data output

- After beamforming pass data through filterbank to get final frequency resolution
- Quantise to 4+4bit resolution for correlator
- 72 single pol beams x 500MHz x 8bits/Hz
 = 288Gb/s or 30x10G optical links for output data
 - 15 per board

Possible beamformer board

- Two boards required for Phase1
- 40x8.5G in and 5x10G out with current technology
- FPGAs with required I/O available this year

Exploring the Universe with the world's largest radio telescope

Cost estimate Phase 1 (includes RF over Fibre)

- Assume 8000 multiplier FPGA ~\$1k, ADC \$40/input, RF over Fibre \$100/link
- Cost for 200 element PAF beamformer ~54k€
- 120 element PAF ~35k€ (\$=0.75€)

Beamformer component	Cost
Beamformer boards and FPGAs	\$18,000
ADC-Beamformer optical links	\$4,000
Coarse filterbank FPGA	\$2,500
ADC	\$8,000
ADC / Coarse filterbank boards	\$10,000
Transport of Analogue data to ADC	\$20,000
Card cages, racks, power supplies	\$10,000

Estimate for 200 element PAF (10x10 dual pol)

NRE

- Processing board simple
 - Three FPGAs
- ADC some complication from 20 RF over Fibre receivers and five ADC.
 - Must take care with analogue parts
 - Total hardware development ~1 man year
- Firmware borrow most from existing PAF development, filterbanks, beamform, command/control, ACM ...
 - Main extras are ADC interfaces and data transport to PAF.
 - Estimate 3 man years
- NRE less than 1M€ compared to 8-13M€ for hardware

Coaxial Cable Revisited

- Beamformer comprises ~10 boards.
 - Fits in a single chassis
 - But limited by need to attach 100-200 coaxial cables.
- Is small enough to mount on the dish, say under dish surface or on offset dish feed arm
 - Low cable loss, No coaxial cable through cable wraps
- Would allow wider bandwidth system but probably no cost savings.
 - Maintenance more difficult
 - RFI shielding
 - Remote cooling
 - Need weather proof RF connectors and enclosure.

SKA Phase 2 PAF Beamformer

- Assume small, low power ADC and laser driver developed. But must solve RFI problem for ADC in PAF
- Can now direct sample full RF 1.5-0.6 GHz
- ADC 8-bits at 3.2 GS/s = 25.6GS/s
- Integrate 28Gb/s serialisers that directly drive laser TX.
- Target power 100-300mW per channel
- Integrated on board with LNA or aggregate many per board

Beamformer – Phase 2

- Assume FPGA performance quadruples
- 4 FPGAs for beamforming and coarse (1MHz) filterbank – 1000 channels/1GHz BW
 - Single board beamformer
- ADC data aggregated onto 12 Fibre ribbon
 - Up to 12 required.

Exploring the Universe with the world's largest radio telescope

Costs Phase 2 Beamformer

- Assume Quad ADC, without NRE, \$32, FPGAs sill \$1000, optical 12 channel TX \$200.
- Total cost 15k€ for 200 elements

Beamformer component	Cost
ADC	\$1,600
ADC-Beamformer digital optical	\$2.400
ADC board and RFI enclosure x16	\$3,200
Processing board including FPGA	\$8,000
100 GE outputs x 8	\$1,600
"Pizza" box and power supplies	\$2,000

Conclusion

- Single board beamformer/filterbank by Phase 2
- Digital electronics cost continue to decrease
- COTS ADC and RF over Fibre data transport major cost for Phase 1
 - Estimate beamformer cost 2015-17
 - 200 element PAF ~54k€
 - 120 element PAF ~35k€
- For lowest cost Phase 2 need to develop integrated ADC the directly drives optical TX at ~25Gb/s
 - Cost for beamformer could be as low as ~15k€