

PAF Beamformer John Bunton, CSIRO

Beamforming task

- At the focus of dish illumination of phase array depends on look angle
- See examples
- Detect signal from phased array and sum
- Approx. conjugate match
- Do this for all look angles (beams)
- Weights different from beam to beam and are frequency dependent
- Focal spot size proportional to wavelength

Exploring the Universe with the world's largest radio telescope

Chequer board array example

- Currents on a chequerboard array a the focus of 12 m dish at 1.25 GHz . Array element spacing 9cm.
- Illuminated by a point source ~1degree off boresight.
- Signal from single port does give a beam but
- Poor aperture effeciency
- High spill over
- Noise and power coupling to adjacent ports
- Digital beamforming
- improves A/T
- Control of sidelobes

- Control of beam shape
- Beam steering

Time Domain Beamforming

- Beam weighted sum of all elements (some zero)
- Weighting is frequency dependent $=$ filter $h(t)$

$$
\operatorname{Beam}(t)=\sum_{j \text { overall ports }} h_{j}(t) * * v_{j}(t)
$$

- Compute load proportional to
- No beams B
- No elements N
- Bandwidth BW
- No filter taps (>40) T
- Multiplies/s ~2.5 B.N.BW.T

Frequency Domain Beamforming

- Decimate data into frequency channels
- Must do this for FX correlator in any case
- Multiplies/s ~40 N.BW
- Single complex weight per frequency channel
- Beam forming ~5 B.N.BW Multiplies/s
- No beams B
- No elements N
- Bandwidth BW

Comparison

- Equality time and frequency compute load when

$$
\begin{aligned}
& \text { 2.5 B.N.BW.T }=40 \text { N.BW+5 B.N.BW } \\
& \text { No taps } T=16 / \mathrm{B}+2
\end{aligned}
$$

- No beams B is the order of 50-100 (single pol.)
- 25-50 Dual polarisation beams
- Allowable no of taps for equal compute load is ~ 2, need more than 40.
- Use Frequency Domain Beamforming

Other Compute Requirement

- Calculation of weights require Array Covariance Matrix
- Multiplies/s ~10BW. N²
- Could dominate
- But do fraction of time samples and frequency channels at any time $\sim 20 \%$ of beamforming
- ADC statistics, Power spectrum, Capture time sequences ...

Beamformer Architecture (Cross connect)

- For SKA Phase 1 probably have multiple beamformer boards
- Pass data through filterbank and distribute part of the bandwidth to each board

Alternative Architecture (Ring)

- Connect beamformer in ring
- Same amount of input data
- But data for all beams must be transported between boards
- Use

Cross Connect

Example - ASKAP Processing

- Note fine filterbank, coarse delay, transient buffer, fringe stopping considered part of correlator here

Data Transport form PAF

- Two options: Coaxial cable or Fibre
- Coaxial cables expensive, bulky and lossy - Used in ASKAP and APERTIF
- Transport signal to ground level
- Fibre is relatively cheap, low loss and easy to install
- Until recently transmitters too expensive in weight or $\$ \$$. But this is changing.

Fibre data transport (Digital)

- Target solution
- 100-200 analogue inputs means multiple boards
- ASKAP PAF digitiser shown ~140kg
- Currently digitising system is too large and heavy to install in PAF
- Will get small and lighter with time
- Ideally ADC in PAF
- Small low power ADC with simple connection to optical transmitter needed
- Expected for Phase 2

- High degree of uncertainty for Phase1

Fibre data transport (RF over Fibre)

- RF over Fibre has normally used external modulator
- Very good performance
- But cost is high
- Directly modulate DFB laser have brought cost down to reasonable values
- Limitation high second order modulation,
- At most one octave bandwidth
- Bandwidth similar to that of the proposed octave band feeds
- Small size and low power allows installation in PAF
- Assume this is the solution used for SKA Phase 1

Bandwidth and location

- RF over Fibre uses single mode fibre.
- Transport for more than 10km (central site?)
- PAF say $1.5-0.6 \mathrm{GHz}$ need two octave bands
- One is $1.2-0.6 \mathrm{GHz}$
- Some transition zone needed
- assume correlator and beamformer 0.5 GHz bandwidth
- Octave band direct sample in second Nyquist zone of ADC
- Second band would be 1.5 to 1.0 GHz

Beamformer requirements

- 500 MHz bandwidth, 36 dual pol beams, 100 element per single pol beam
- Compute load
$-500 \mathrm{MHz} \times 72$ single pol beams x100 complex MACs/beam x 4 multiplies/Complex MAC
- 14.4T mult/sec plus over head ~20Tmult/s
- FPGA in 2016-17 has 8000 multipliers at 0.45 GHz
- 3.6T mults/s per FPGA-6 FPGAs needed
- Two boards to implement beamformer
- Smaller lower performance PAF - fewer FPGAs

ADC/Filterbank

- ADC system has 100-200 optical RF inputs.
- Assume quad ADC = 25 to 50 ADCs
- Say, 5 Quad ADC per board
- 5 to 10 ADC boards
- Optical link to beamformer needed
- Use FPGA to packetise data and drive optical TX
- Two links needed - one per beamformer board
- Use same FPGA for filterbank and each link carries data for half the bandwidth
- Filterbank for 1.6 GHz sample rate ~32Gmultiplies/s
- For 200 elements - 6.4Tmuliplies/s = 10 small FPGAs

Beamformer System

- ADC/coarse filterbank board takes in ~ 20 optical RF and filters to 1 MHz bands
- 5-10 boards
- Half BW to each BF
- 20 inputs x 250 MHz x $16 \mathrm{bits} / \mathrm{Hz}=80 \mathrm{~Gb} / \mathrm{s}$
- Single 12 fibre SNAP12 optical TX has $12 \times 8.5 \mathrm{~Gb} / \mathrm{s}=$ 100Gb/s
- Each BF receives 5-10 12 fibre ribbons

Data output

- After beamforming pass data through filterbank to get final frequency resolution
- Quantise to 4+4bit resolution for correlator
- 72 single pol beams $\times 500 \mathrm{MHz} \times 8 \mathrm{bits} / \mathrm{Hz}$
$=288 \mathrm{~Gb} / \mathrm{s}$ or $30 \times 10 \mathrm{G}$ optical links for
output data
- 15 per board

Possible beamformer board

- Two boards required for Phase 1
- $40 \times 8.5 \mathrm{G}$ in and $5 \times 10 \mathrm{G}$ out with current technology
- FPGAs with required I/O available this year

Exploring the Universe with the world's largest radio telescope

Cost estimate Phase 1 (includes RF over Fibre)

- Assume 8000 multiplier FPGA ~\$1k, ADC \$40/input, RF over Fibre \$100/link
- Cost for 200 element PAF beamformer $\sim 54 \mathrm{k} €$
- 120 element PAF ~35k€ (\$=0.75€)

Beamformer component	Cost
Beamformer boards and FPGAs	$\$ 18,000$
ADC-Beamformer optical links	$\$ 4,000$
Coarse filterbank FPGA	$\$ 2,500$
ADC	$\$ 8,000$
ADC / Coarse filterbank boards	$\$ 10,000$
Transport of Analogue data to ADC	$\$ 20,000$
Card cages, racks, power supplies	$\$ 10,000$

Estimate for 200 element PAF (10x10 dual pol)

NRE

- Processing board simple
- Three FPGAs
- ADC some complication from 20 RF over Fibre receivers and five ADC.
- Must take care with analogue parts
- Total hardware development ~ 1 man year
- Firmware - borrow most from existing PAF development, filterbanks, beamform, command/control, ACM ...
- Main extras are ADC interfaces and data transport to PAF.
- Estimate 3 man years
- NRE less than 1M€ compared to 8-13M€ for hardware

Coaxial Cable Revisited

- Beamformer comprises ~10 boards.
- Fits in a single chassis
- But limited by need to attach 100-200 coaxial cables.
- Is small enough to mount on the dish, say under dish surface or on offset dish feed arm
- Low cable loss, No coaxial cable through cable wraps
- Would allow wider bandwidth system but probably no cost savings.
- Maintenance more difficult
- RFI shielding
- Remote cooling
- Need weather proof RF connectors and enclosure.

SKA Phase 2 PAF Beamformer

- Assume small, low power ADC and laser driver developed. But must solve RFI problem for ADC in PAF
- Can now direct sample full RF $1.5-0.6 \mathrm{GHz}$
- ADC 8 -bits at $3.2 \mathrm{GS} / \mathrm{s}=25.6 \mathrm{GS} / \mathrm{s}$
- Integrate 28Gb/s serialisers that directly drive laser TX.
- Target power 100-300mW per channel
- Integrated on board with LNA or aggregate many per board

Beamformer - Phase 2

- Assume FPGA performance quadruples
- 4 FPGAs for beamforming and coarse (1 MHz) filterbank - 1000 channels/1GHz BW
- Single board beamformer
- ADC data aggregated onto 12 Fibre ribbon
- Up to 12 required.

FOCUS

Costs Phase 2 Beamformer

- Assume Quad ADC, without NRE, \$32, FPGAs sill $\$ 1000$, optical 12 channel TX $\$ 200$.
- Total cost 15k€ for 200 elements

Beamformer component	Cost
ADC	$\$ 1,600$
ADC-Beamformer digital optical	$\$ 2.400$
ADC board and RFI enclosure x16	$\$ 3,200$
Processing board including FPGA	$\$ 8,000$
100 GE outputs x 8	$\$ 1,600$
"Pizza" box and power supplies	$\$ 2,000$

Conclusion

- Single board beamformer/filterbank by Phase 2
- Digital electronics cost continue to decrease
- COTS ADC and RF over Fibre data transport major cost for Phase 1
- Estimate beamformer cost 2015-17
- 200 element PAF ~54k $€$
- 120 element PAF ~35k $€$
- For lowest cost Phase 2 need to develop
integrated ADC the directly drives optical TX at ~25Gb/s
- Cost for beamformer could be as low as ~15k€

