

SKA Non Imaging Processing Concept description: GPU processing for real-time isolated radio pulse detection

The problem

- Poorly sampled parameter space for fast, dispersed pulses.
- Classes of neutron stars -such as RRATsbetter found through searches of Individual Radio Pulses Exploring the Universe with the world's largest radio telescope

Dispersion searches

 N^2 or N logN process per DM per time sample (N > 1000) (10000 DMs) (10000+ samples/sec)

[/] Monday, 11 April 2011

Hardware description

Sampling rate			200	or 160 MHz	
Subband time resoluti	on		5.12	2 or 6.4 μ <u>s</u>	
Subband frequency re	solution		195	.3 or 156.2 k	Hz
Maximum sky bandwie	dth		47.6	5 MHz	
Station Beam FWHM					
Size (°)	99	Δ	0	2.5	12

Specifications

LBA frequency range

HBA frequency range

Number of usable subbands

Maximum number of beams

elevation range

 Size (°)
 9.9
 4.0
 2.5
 1.2

 Frequency (MHz)
 30
 75
 120
 240

Exploring the Universe with the world's largest radio telescope

30 - 90 MHz

30° - 90°

244

110 – 240 MHz

244 (1 subband/beam)

International LOFAR stations as testbeds

GPU hardware

DVIDIA

GDDR3

10

		nvid	
Tesla S1070 1U System	Processors	4 x Tesla T10P 960 1.5 GHz	
end of line, £5500	Number of cores		
	Core Clock		
	Performance	4 Teraflops	
	Total system memory	16.0 GB (4.0 GB per T10P)	
	Memory bandwidth	408 GB/sec peak (102 GB/sec per T10P) 2048-bit, 800MHz GDD (512-bit per T10P) 1U (EIA 19" rack)	
	Memory I/O		
	Form factor		
	System I/O	2 PCle x16 Gen2	
NVIDIA Contidential	Typical power	700 W 1	

GPU hardware

NVIDIA Tesla M2050 Fermi

double precision, £1500

NVIDIA GeForce GTX series

single precision, slower data transfers, £400

3 or 6 GB on-board memory >1.5 GB on-board memory nominal 250W during operation

Hardware layout for ILS

Software layout for ILS

Exploring the Universe with the world's largest radio telescope

Tres = $164\mu s$ v = 146 MHz $\Delta v = 6kHz$ NDMs = 1200

Power Consumption

			Warning Threshold		Failure Threshold		
Status	Probe Name	Reading	Minimum	Maximum	Minimum	Maximum	
0	GPU 1 Watt	82 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 2 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 3 Watt	80 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 4 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 5 Watt	82 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 6 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 7 Watt	84 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 8 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 9 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 10 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 11 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 12 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 13 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 14 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 15 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	
0	GPU 16 Watt	0 Watts	0Watts	240Watts	0Watts	252Watts	

Refresh

Temperatures

Exploring the Universe with the world's largest radio telescope

Refresh

Conclusions

- €5000 for incoherent dispersion search of 800 Mbps of beamformed data
 - €3500 for CPU server + €1500 for GPU
 - <1kW, possibly even <500W</p>
 - isolated radio pulse search of 2000+ DMs with current, unoptimised kernels at LOFAR high band frequencies
- Algorithmic development on dedispersion kernel is
 pushing requirements down
- CPU buffering can be used for additional processing, e.g. folding.