Strategy to Proceed to Next Phase

Andre van Es & Andrew Faulkner

- Activities:
 - Demonstrators and simulators
 - Reviews
 - Produce selection matrices
- Decisions on system components
- Prepare AA-low for SKA₁
- Meet the AIP requirements for AA-mid

SKA-AAVF

AA-CoDR

- AA-low element and array design
 - Wide bandwidth, grating lobe control, sensitivity
 - Single element with dual element fall-back
- Low noise amplifiers and matching
 - Ideally differential, single ended fall back
- Low Power
 - Critical throughout the electronic design
- AA-mid front end
 - Mechanical design of Tiles and inter-Tile
- Calibration
 - Essential to performance

- AAVS
- Series of demonstration systems to prove the designs
 - AA-mid
 - AA-low
- Generally use common processing hardware
- Support multiple element/array options for evaluation

	AA-low	Small element and array demonstrators	AAVS0	2011
L		Technology demonstrator & costed sub-system design	AAVS1	2013
L		SKA1 full pre-production prototype array	AAVS2	2015
L		SKA1 manufacturing data package		2015
L				
L	AA-mid	Individual tile demonstrators	AAVS0	2011
L		Single array performance demonstrator	AAVS1	2013
L		multi-array interferometer performance demonstrator	AAVS2	2016
L		SKA1 capable costed design		2016
	AA system	AA-low and AA-mid AA-CoDR		2011
		SKA2 technology roadmap & costed system design		2014
Apr	·il 2011	Strategy to proceed to Next Phase		AA-CoDR

AA Demonstrators

1			Array Scale	Site	Purpose & Comments
	AAVS0 2011	AA-low	10-16 elements	Local to developers	Prove electromagnetic performance on full-size elements in small array. Multiple arrays to be built.
		AA-mid	~1m² tile	Test chambers	For ORA: prove concept and LNA interface For Vivaldi: refine array and manufacturing techniques
	AAVS1 2013/4	AA-low	256-512 elements	Selected SKA site strongly	Single station to prove complete front-end including the LNA and analogue chain. Show actual T _{sys} , beam performance and time stability.
		AA-mid	256-512 clusters of ≥4 elements	preferred.	Single station showing beam performance and the limits of analogue power requirements
	AAVS2 2015/6 pril 2011	AA-low	~10,000 elements in a single and/or multiple arrays	Selected SKA site.	Pre-production system for SKA ₁ AA-low system, testing the actual SKA ₁ components. This provides essential input to the PRR. May be configured in one or multiple arrays as required.
		AA-mid	16 stations of 256-512 tiles of ≥4 elements		Multiple stations, similar to AAVS1, to show imaging performance. Final proving for SKA ₂ . Small numbers of beams for processing reasons.

	Date	Milestone/Event	Remarks
SQUARE	Jan 2010	AAVP start	
	Q1 2011	AAVS test requirements	Agree tests required of the AAVS
	April 2011	AA CoDR	Aperture Array system, AA-low and AA-mid, CoDR
	May 2011	AA-low front-end review	Review status of the alternative AA-low elements
	Oct 2011	AA-low front-end performance appraisal	Select design(s) to take forward to AAVS1
	Oct 2011	AA-mid front-end perf. appraisal	Select design(s) to take forward to AAVS1
	Nov-Dec	AAVS0 completion and test	Testing small array test systems for AA-low and AA-mid
	Dec 2011	AAVS1 digitisation & B/F design appraisal	Digital tile beamformer for AA-low and AA-mid
	Dec 2011	AAVS1 CDR critical design review	Approve AAVS1
	April 2012	AAVP final report for PrepSKA	Consolidated findings from the PrepSKA work
	Q2 2012	SKA site selection	For reference: performed internationally
	Q2 2012	AAVS1 PRR	Production readiness for a small AAVS system
	Q3 2012	Start AAVS1 construction	Build AAVS1 on selected SKA site
	Q4 2012	Start AAVS1 commissioning	Start test and evaluation process
	Q1 2013	SKA1 Subsystem PDR	PDR for AA-low on SKA Phase 1
	Q2 2013	AAVS2 PDR	
	Q3 2013	AAVS2 CDR	Covers both AA-low and AA-mid
	Q4 2014	AAVS2 PRR	This requires the availability of manufacturing information
	2013-2014	AAVS-mid interferometer design & build	Detailed scheduling on AAVS TBD
	2014	AAVS-mid reports	Report on performance including imaging for AA-mid
	2013-2015	AA-low station build	SKA ₁ AA-low pre-production manufacture
	Q2 2015	AAVS2-mid PDR	Evaluate inclusion of AA-mid in SKA2
-	Q4 2015	SKA1 subsystem PRR	Approval review for AA-low build in SKA1
Ap	rii Zutti	Strategy to proce	eed to Next Phase AA-CoDK

Decisions, decisions....

Most sub-systems: "just" design for the specification

AA-low

- Front-end
 - Single/dual element array
 - Array layout design
 - Element type
 - Regular tiles or individual elements
- Signal processing
 - Any analogue beamforming?
 - Location of digitisation
 - Beamform in clusters?

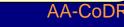
AA-mid

- Front-end
 - Element type
 - Element pitch
 - Single ended or differential LNA
- Signal processing
 - Amount of analogue beamforming
 - Data rate from Tile
 beamformer to Station
 Processor

Narrowing the options

There are multiple choices for some sub-systems – Good

Choosing the "**Best**" option:


- 1. Remove options when shown (demonstration or simulation) to not be capable of SKA performance e.g.:
 - Too expensive
 - Performance cannot be made adequate
 - Limited life etc.
- 2. Try not to remove options **unnecessarily early**
- 3. Use a **selection matrix** make final choices, agree criteria e.g.:
 - Cost F
 - Scientific & technical performance
 - Upgradeability
 - Flexibility

April 2011

- Power

etc.

- Availability
 - Experience

Principal design option decisions

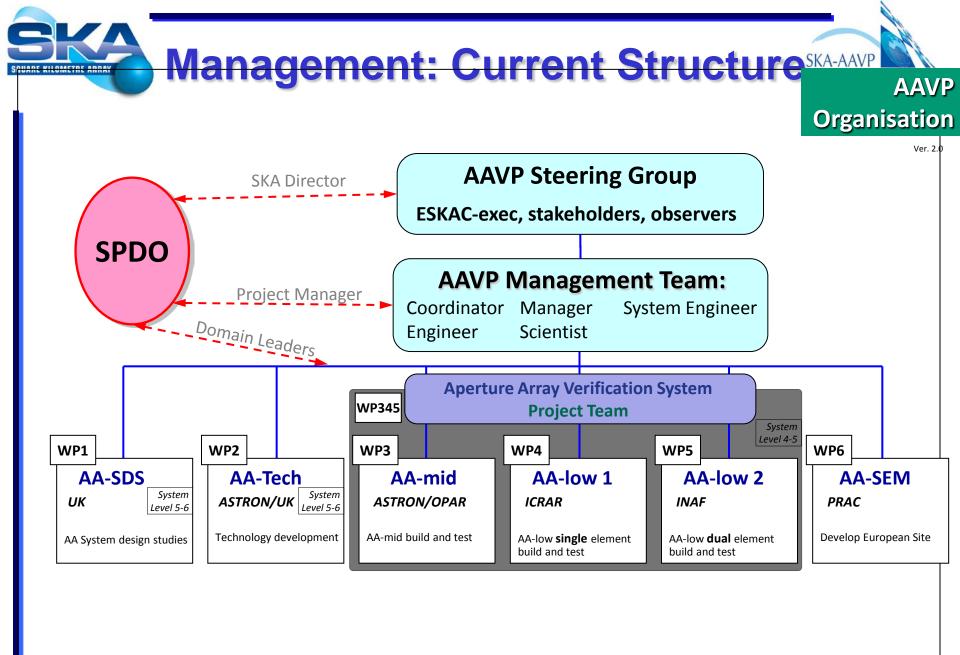
AA-low single or dual array Q1 2013 Decision before SKA₁ PDR AA-low antenna element Q1 2013 3 current designs Take forward viable ones to AAVS1 Decision coincident with single/dual array before SKA₁ PDR Q4 2014 AA-mid element selection Take forward viable designs through AAVS1 Decision prior to AAVS2 PRR **Processing Architecture** Q1 2013 AAVS0 & 1: not critical for hardware Suggest SKA₁ PDR Q3 Actual devices as late as possible 2013 for AAV1 results Decision before SKA₁ PDR

Strategy to proceed to Next Phase

Management

.... over to Andre

Strategy to proceed to Next Phase

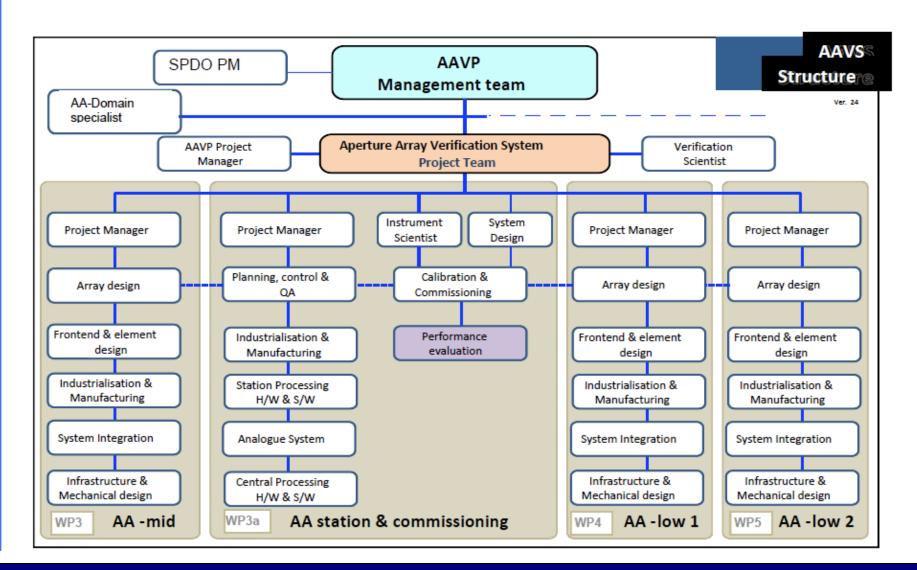


- Overview
 - Current AAVP Structure
 - Transition phase
 - Timeline for Aperture Arrays

AA-CoDR

The AAVP Steering Group:

- Political and strategic orientation of the Project;
- The "Description of Work".
- Annual validation of the realised progress in accordance to the DoW;
- Modifications to the "Description of Work at Work Package level", including, but not limited to, decisions affecting the potential outcome of the programme.



The AAVP Management Team:

- Monitor progress of the AAVP activities against the AAVP milestones as agreed by the APSG;
- <u>Concerning the Description of Work:</u>
 - prepare the programme of activities for the Description of Work;
 - make progress reports on the state of advancement of the Project to the APSG;
 - establish the Project Deliverables;
 - present the Project budget to the APSG
- Intellectual Property Register
- Risk Register
- Planning Schedule
- Prepare Reviews

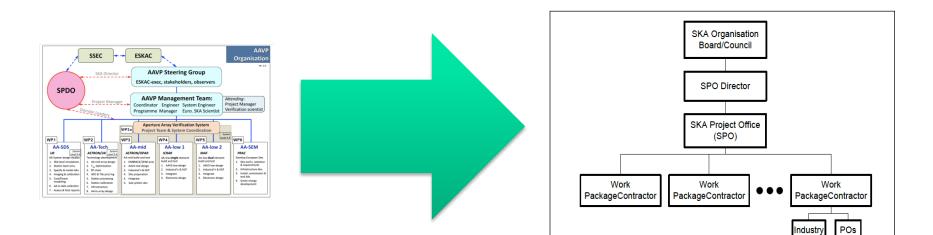
Management: Program Structure

April 2011

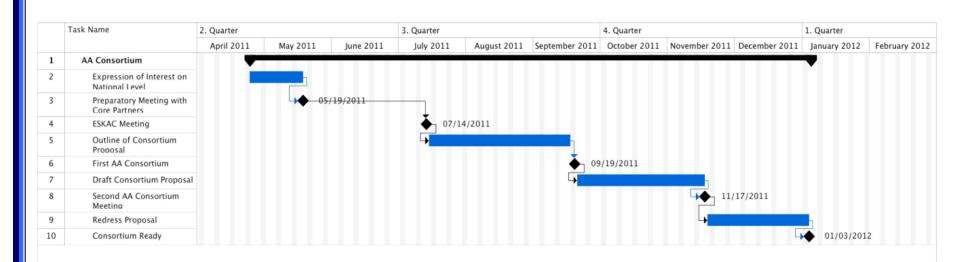
QUARE KILOMETRE ARRAY

Strategy to proceed to Next Phase

AA-CoDR


SAUARE KILOMETRE ARRAY AA : Transition to SPO

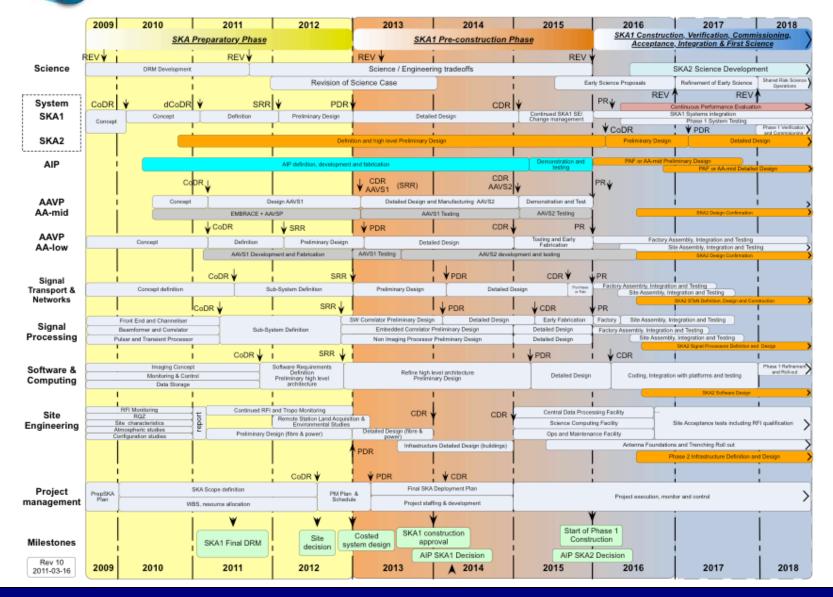
- In the course of 2011 SPDO will evolve into a legal entity SPO
- According to the PEP the project governance will change
- For AAVP this means the transformation from a Program to a Work Package carried out by a consortium
- Process must be managed in a way that has minimal impact with the ongoing work
- A transition plan should be in place to guide this



Strategy to proceed to Next Phase

Strategy to proceed to Next Phase

Management Transition

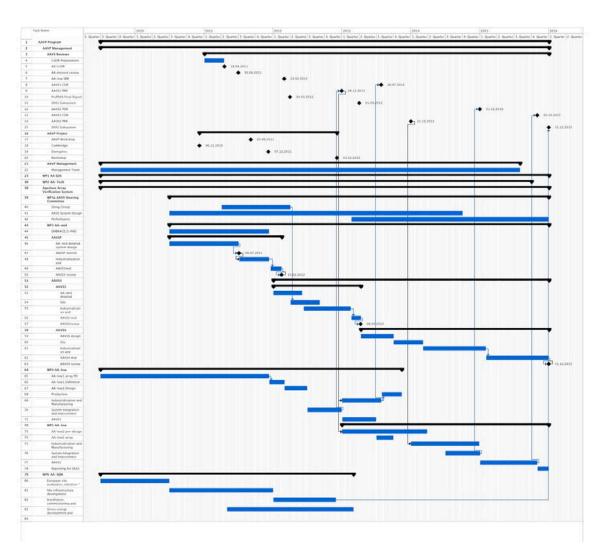

- Aim to minimize impact on ongoing work
- Prepare consortium for SKA₁ and SKA₂
- Agreement ready end 2012:
 - Expression of interest early May
 - Preparation meeting May
 - Summer: European meeting for proposal preparation

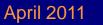
SKA-AAV

AA-CoDR

- September: First Consortium Meeting
- November: Agreement on Consortium
- December: Signatures

Overall SKA Plan


April 2011


DUARE KILOMETRE ARRAY

Strategy to proceed to Next Phase

AA-CoDR

