.....

Jan Geralt Bij de Vaate

- AA-low
 - Pathfinders
 - Engineering issues
 - Summary
- AA-mid
 - Pathfinders
 - Engineering issues
 - Summary

- LOFAR
- Murchison Widefield Array (MWA)
- (Long Wavelength Array (LWA), Paper)

- 33 Dutch stations ready
- 7 International stations ready
- First science results

Cygnus A 15 hour observation with 26 stations

- Low Frequency spectroscopic Imaging of the Sun
- 32 Tiles

Oberoi ApJ Letters 2011 MWA left SOHO right

From AA-low Pathfinders to SKA₁

- Extended (instantaneous) Frequency range
- Improved T_{sys}
- Improved dynamic range
- Improved Field of View
- Cost reduction

- Tier 3: Array Concepts
- Tier 4:
 - Antenna
 - Low Noise Amplifier
 - Receiver + ADC
 - Tile Signal Processing
 - Station Processing

- Regular Lattice grid
- Random Sparse
- Golden Ratio Spiral
- Snow flake

SKA-AAVP

Antenna Array Concepts: xarray

SQUARE KILOMETRE ARRAY

Apri

S 🖑 🕲 🐙 🔲 🗉		
General Parameters	Grid Generation	Element Weights
Frequency (MHz): 130	Grid Type: Golden Ratio Spiral	Element Weighting: Uniform
Steering (deg): Theta 20	Grid Perimeter: 📝 Circular 🔲 Square	Errors (% up to): Amplitude Phase
Celestial Phi 20	Make Grid Draw Grid Import Grid Rotate	Room Commitation
Max. Diameter (m): 18		
Spacing (Lambda): 0.5	Help Delete Grid Save Grid Stats	Calculate Load Image gText Advance
20-	· · · · · · · · · · · · · · · · · · ·	
15-		
5-	0.2	
0		
-5-		
-10-	0.4	Y-46-000000
		A JOHCEEVED S
15-		
-15-	0.6	-CN3322

- This example:
 - Medium gain antenna (+/-45 degree Beam width)

Ratio between Low gain (45 degree) and High gain (30 degree) Antenna

Engineering the AA Concepts

Antenna Array Concepts

	Deployment cost	Freq bandwidth	A _{eff} /T _{sys}	Dynamic range
Random elements	High	Good	Optimal	Optimal
Random tiles	Moderate	Good	Good	Good
Regular grid tiles	Low	Optimal	Good	(strong gratings)

-LOFAR, MWA, AAVP will need to confirm/complete the trade-offs and array simulations -*More:* Filling factor, uv coverage, calibration, FoV, redudant baselines

 The number of 5sigma sources in a 10 sec snapshot observation

Engineering the AA Concepts

Demo redundancy monitoring: 24h obs at CS302, LOFAR HBA zenith tile beam is formed

270

KILOMETRE ARRAY

When redundancy assumption holds for HBAs, its calibration algorithm works well

April 2011

Engineering the AA Concepts

RUARE KILUMETHE ARKAY

96 Low Band Antennas per station Station diameter: 45 – 85 m (LBA) Sparse pseudo-random configuration

Engineering the AA Concepts

AA-CoDR

SKA-AAVP

SKA-AAVP

High Band Antenna

- 768 x 2 dipoles per station
- Sparse rectangular grid
- Analog beamformer per tile (4x4 elements)

SKA-AAVP

High Band Antenna

- 768 x 2 dipoles per station
- Sparse rectangular grid
- Analog beamformer per tile (4x4 elements)

- HBA tiles have a different orientation in every station
- The product beam suppresses grating lobes
- Individual dipoles are rotated back for calibration purpose

- MWA 512 tile configuration
- Active Tile placement (controlled random)
 - uv Coverage
 - Beampattern
 - Landscape
 - Cabling

- MWA / LOFAR antenna concepts are not sufficient for the large bandwidth requirement
- 'Enhanced' Dipole
- Conical Spiral
- Vivaldi

• Bow Tie, Log Periodic, Toothed log periodic

Engineering the AA Concepts

- Single polarization well known
- Very Benign impedance
- Limited dual polarization results
- Equal E and H plane

- Large bandwidth
- Well known concept
- Good polarization behavior

- Antenna Gain, Directivity -- A_{eff}
- Antenna gain -- Sky Coverage

	Enhanced Dipole	Log Periodic	Spiral	Vivaldi
	Dipolo	T Chicalo		
Gain / sky coverage	Low / Good	High / Low	Medium	Medium
Impedance	Medium	Good	Good	Good
Cost	Low	High?	Medium	High?

- Receiving the AA-low 70-450MHz band with two receptors
 - AA-low₁: 70 200 MHz
 - AA-low₂: 200 450MHz
- AA-low₁ doable with LOFAR / MWA stile antenna
- AA-low₂ requires better (impedance) antenna
- Station processing could be shared
- More antennas, LNAs, infrastructure etc.

- T_{system} requirement: $T_{rec} = 10\%T_{sky} + 40K$
- Requires $T_{LNA} \sim 20 K$

- 7:1 band width
 - GaAs PsHEMT
 - SiGe BJT
 - Should not be a problem with stable antenna impedance

April 2011

Engineering the AA Concepts

- First stage beamforming
 - Analogue beamforming: Time delay
 - Reduces signal processing load
 - Reduces power consumption
 - 'Quantization' side lobes

- Digital beamforming
 - High level of integration
 - 'full' control, high accuracy

• High NRE

- RFI: 2005 data
 - Max hold combined South-Africa and Australia

- After pre-whitening and linear addition of RFI powers (assuming 3dB antenna gain):
- 22dB dB ratio between RFI and noise power
 - 4 bit for RFI headroom
 - 2 bit for gain variations/setting
 - 2.2 bit for noise sampling (quantization)
 - 0.5 Noise floor ADC
- 8 bit should be fine
- 6 bit only if SKA site is much better

• Can be expended to tile level

- For 24 hour operation 2 Watt receivers need a 10-15 W Photo Voltanic panel: 40x30cm and battery
 - 100mW LNA
 - 1400mW RF fibre link

Graph of annual system performance*

- Photonic RF transmission
 - Current cost ~100 euros
 - 60mW power each side
 - 0dB gain
 - Kilometers range
 - (20x15cm panel?)

- To generate 160 beams out of the 700 inputs
 - Requires 170 TMAC/sec
- 1st generation Uniboard requires 84 boards
- Or much less when e.g. PChip technology can be used

Uniboard

SKA-AAVP

Engineering the AA Concepts

 Combination of modeling, selfcall, measurement equation..LOFAR / MWA

- Array configuration
 - Tiled Golden Ratio Spiral?
 - Optimization Criteria to be determined
- Antenna element choice
 - No favorite yet
- Single band / dual band
 - Design effort focuses on single
- Analogue beamforming / Digital tile beamforming

 Electronic Multi-Beam Radio Astronomy Concept: EMBRACE

Engineering the AA Concepts

April 2011

April 2011

Engineering the AA Concepts

• Material bill only!

AA-mid: from EMBRACE to SKA

- T_{sys}
- Receiver bandwidth (eq. to AA-low)
- FoV processing (eq. to AA-low)
- Cost!

- Dense
- λ/2 frequency
 - 1000MHz: reduced performance at 1450MHz
 - 1200MHz: EMBRACE, nearly full performance at 1450MHz
 - 800MHz not considered
- Antenna element
 - Besides Vivaldi ORA element considered
 - Better polarization characteristics?
 - Lower costs?

T_{sys} budget

Aperture Array				
Spill-over	0 K			
Antenna feed loss	4 K			
Low Noise Amplifier	25 K			
Noise mismatch / coupling /2 nd stage	7 K			
Sky	3 K			
Total	39 K			

• Small array tests

• Improved manufacturability with high level of integration

Improved manufacturability

MID connector replacement

EPS tile concept

Engineering the AA Concepts

- Time delay analogue beamforming
- >3Gs/s ADC

- T_{sys} to be demonstrated for full AA-mid bandwidth
 - Requires low RFI environment
- Dual polarization
- Receiver bandwidth increased
- Dynamic range
- Integration / industrialization
- As in AA-low signal processing back-end to be scaled up

