SKA AA High Level System Description

Andrew Faulkner

- Overview of AA designs for SKA₁ and SKA₂
- System view consistent with SKA₁ and SKA₂
- These are concept designs and reasons for choices
- Potential designs not formed in concrete
- Considers technical flow-down from sub-system dev.
- Highlights some likely issues

This is a discussion on AA Station designs

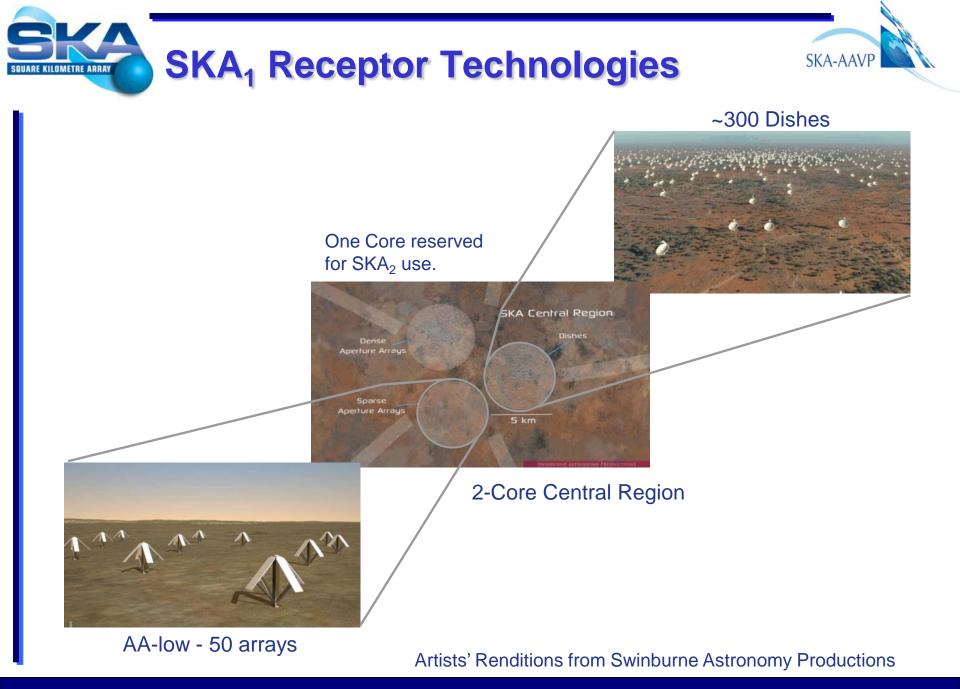
SRUARE KILDMETRE ARRAY Why aperture arrays?

- At lowest frequencies, <~300MHz, the only way of building sufficient collecting area
- Unsurpassed ability to create Field of View through multiple beams
- Extremely flexible in observational parameters e.g. Sky area vs bandwidth
- Can run multiple experiments concurrently
- Using a large amount of up front processing they mitigate the backend processing load
- Can tune imaging coverage, beam size, post-processing load etc.

Processor based AAs provide new opportunities

SKA-AAVI

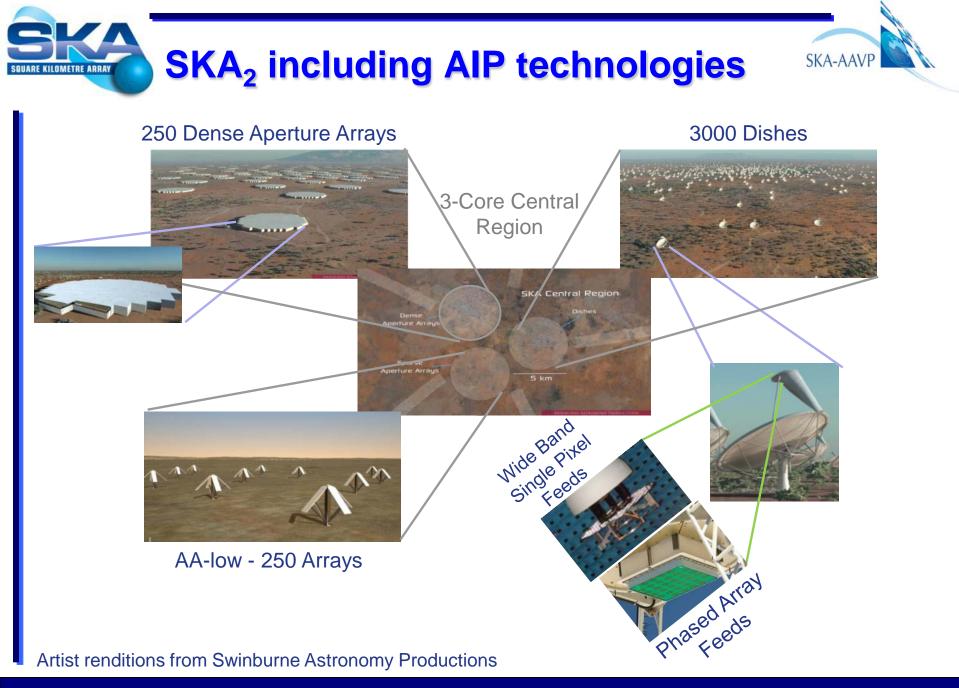
Dynamic Range requirements


- AA is operating at low frequency
- Physical stability (wind etc.)
- Unblocked aperture
- Smaller beams are better
- Narrow band is important
- Calibration capability
- Trade DR for sensitivity

? Tricky

- ✓ Good, study details
- ✓Inherent
- ✓~56m collectors (AA-mid)

- ✓ AA is Wide Band *but* many channels
- ✓ Excellent, by channel
- \checkmark AA v. flexible

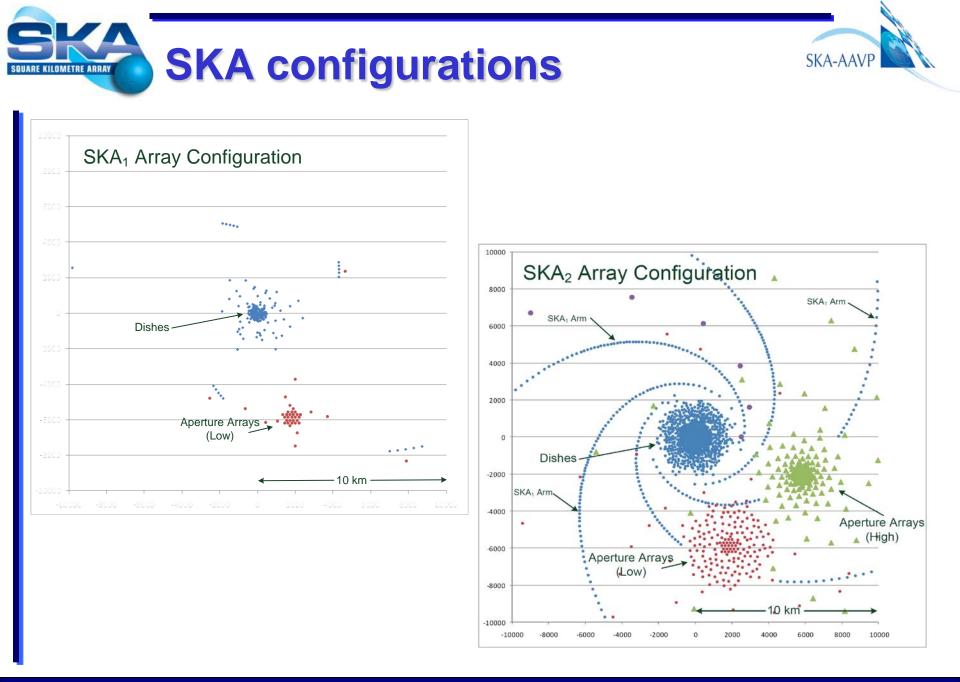


April 2011

High Level System Description

AA-CoDR

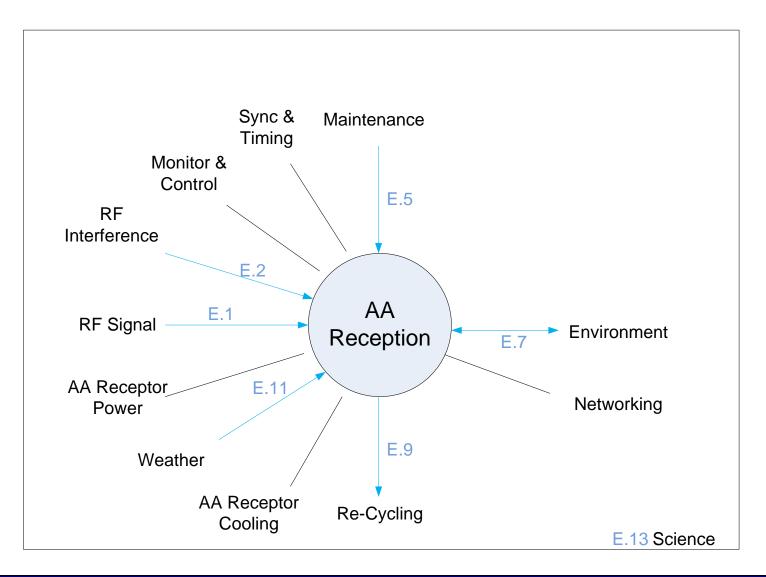
SKA₁


SQUARE KILOMETRE ARRAY

Freq. Range	Collector	Sensitivity	Number / size	Distribution
70 MHz	AA-low	1,000 m ² /K at	50 arrays, Diameter	
to 450 MHz	Sparse AA	100 MHz	180 m	70% within 5 km dia.,
300 MHz to 3 GHz	Dishes with single pixel feed	1,000 m²/K at 1.4 GHz	250 dishes Diameter 15 m	30 % along 3 spiral arms out to 100 km radius

SKA₂

Freq. Range	Collector	Sensitivity	Number / size	Distribution
70 MHz	AA-low	4,000 m ² /K at	250 arrays,	66% within 5 km dia.,
to 450 MHz	Sparse AA	100 MHz	Diameter 180 m	34% along 5 spiral
400 MHz	AA-mid	10,000 m²/K at	250 arrays,	arms out to
to 1.45 GHz	Dense AA	800 MHz Diam	Diameter 56 m	180 km radius
300/1000 MHz	Dishes with			50% within 5 km dia,
single pixel feed 10,000 m /	10,000 m²/K at 1.4 GHz		30% 5km - 180 km	
	+ PAF			20% 180 km-3,000 km.



April 2011

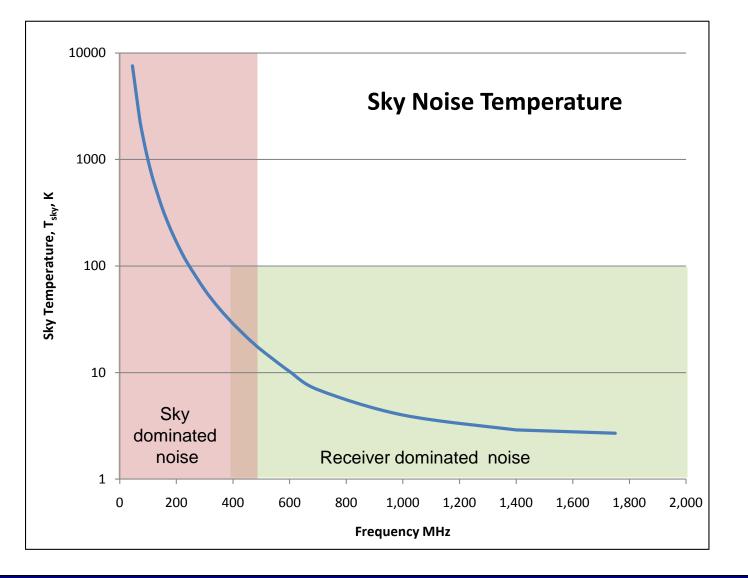
High Level System Description

AA-CoDR

Parameter	AIP: Advanced Inst. Package	SKA Phase 1	SKA Phase 2	Comments
Frequency range	-	70 – 450 MHz	70 – 450 MHz	
Max. Instantaneous Bandwidth	-	380 MHz	380 MHz	
Nyquist frequency	-	~100 MHz	~100 MHz	$\lambda/2$ antenna spacing (min.)
Max scan angle	-	±45°	±45°	
Field of view	-	20 deg ²	200 deg ²	Defined by output data rate
Sensitivity (@ 100 MHz)	-	>1000 m ² K ⁻¹	10 ⁴ m ² K ⁻¹	Total system sensitivity. Target of 2000 m ² K ⁻¹ for SKA ₁
T _{sys} @ 100MHz	-	1100 K	1100 K	T _{sky} 1000K, T _{rec} 100K
Polarisation	-	Tbd	Tbd	After calibration
Imaging dynamic range capability	-	Tbd	74 dB	
Array output data rate	-	1 Tb/s	16 Tb/s	
Array diameter	-	180m	180m	
No. of arrays	-	50	250	
Configuration	-	70% >5 km	66% >5 km	
Max. Sensitive Baseline	-	100 km	180 km	Core to furthest station

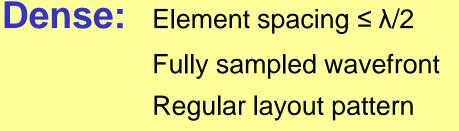
SQUARE KILOMETRE ARRAY

AA-mid principal specifications


SKA-AAVP

AA-CoDR

Parameter	AIP:	SKA	SKA Phase 2	Comments
	Adv. Inst. Package	Phase 1		
Frequency range	400-1450 MHz	-	400-1450 MHz	
Max. Instantaneous	>500 MHz	-	1050 MHz	
Bandwidth				
Nyquist frequency	1000 MHz	-	1000 MHz	Defines dense-sparse antenna array
				transition
Max scan angle	±45°	-	±45°	
Field of view	>2 beams	-	200 deg ²	
Sensitivity (@ 1000 MHz)		-	10,000 m²K ⁻¹	
T _{sys} @ 1000MHz	<50 K	-	< 50K	Ideally reduced T_{sys} of <40 K for SKA ₂
Polarisation separation	Tbd	-	Tbd	
Imaging dynamic range	Tbd	-	74 dB	The capability requirement for high
capability				dynamic range is very challenging
Array output data rate	1 Tb/s	-	16 Tb/s	
Array diameter	~15 m	-	56 m	AIP has a number of arrays for test
No. of arrays	12-16	-	250	
Configuration	Small array	-	66% >5 km	
Max. Sensitive Baseline	~5 km	-	180 km	AIP baseline TBD



High Level System Description

AA-CoDR

Constant A_{eff}

Excellent side lobe control Beam performance equiv to the best dish design

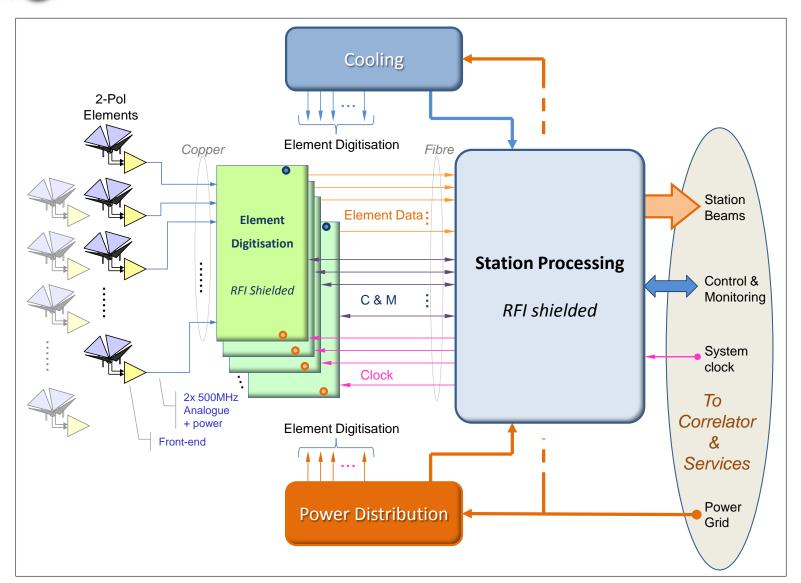
SKA-AAV

Sparse: Element spacing $>\lambda/2$

Layout irregular to control grating lobes

 A_{eff} increases as λ^2 (~ $\lambda^2/4$)

Increased skynoise from grating lobes Possible dynamic range issues



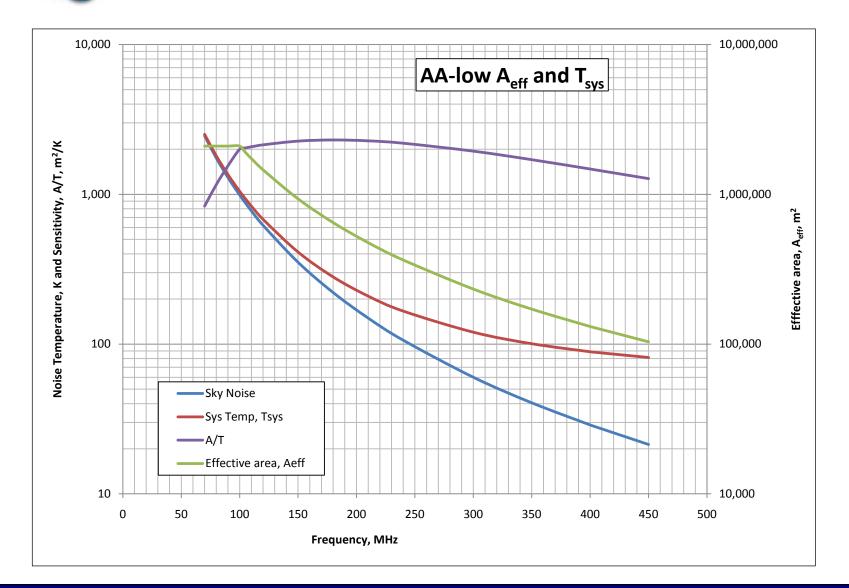
		Regular	Irregular
	Sidelobes	Lowered by gain taper	Lowered by space taper
	Grating lobes	N	0
	Receiver temp	Lower, smoot	h (angle, freq)
Dense	Effective area	Constant over frequen	cy, smooth over angle
	Element patterns	Depend on position	
	Field of View	Large	
	Grating lobes	Few high ones	Many low ones
	Receiver temp	Higher, not smooth (angle, freq)	Higher, smooth (angle, freq)
	Effective area	Steep decrease with wavelength	Steep decrease with wavelength
Sparse		Not smooth (angle, freq)	Smooth (angle, freq)
	Element patterns	Constant for most elements	Depend on position
	Field of View	Sma	aller

An AA-low station layout

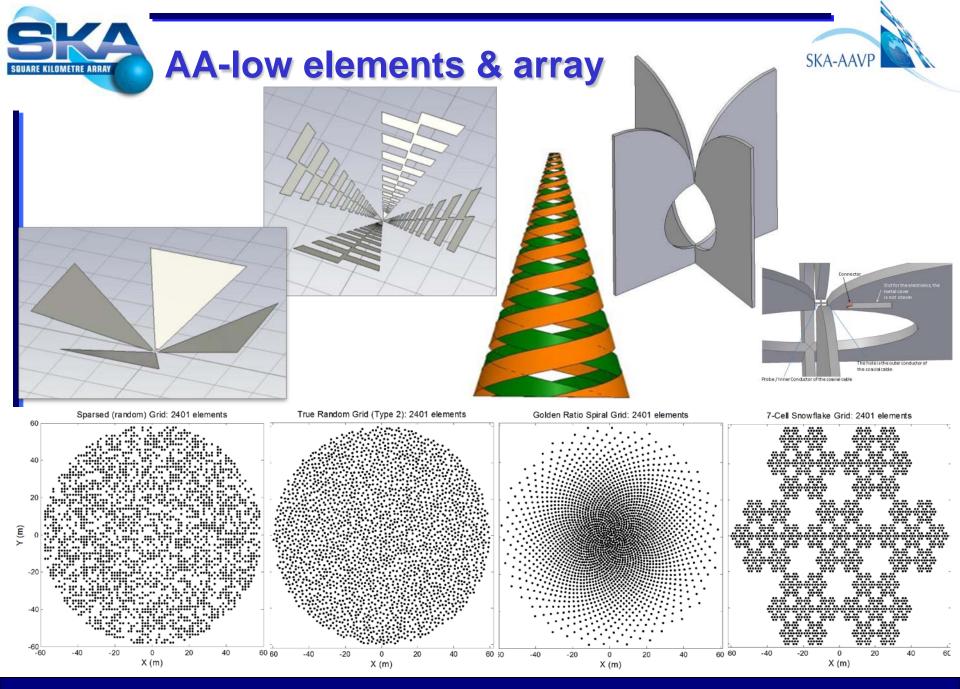
April 2011

QUARE KILOMETRE ARRAY

High Level System Description


AA-CoDR

Frequency range: 70-450 MHz or 6.4:1 Filling factor assuming dense ≤100MHz: 100% - 5% Low grating lobes, avoid sky "hotspots" Ability to fill the core with flexible arrays Calibration capable of reaching 70dB Easy deployment of elements


Simple variation of A/T with frequency

QUARE KILOMETRE ARRAY

High Level System Description

AA-CoDR

April 2011

High Level System Description

AA-CoDR

Array design trade-offs

- Individual elements or Tiles of elements
 - More flexible design with standalone elements
 - Tiles: less work on site, transport costs may be increased
- More randomisation
 - Sidelobes/Grating lobes and system temperature may be reduced
 - Best with individual elements, rather than tiles of elements
 - Beamforming more difficult
 - Likely to be more expensive
- Totally random
 - Tessellating the stations core design
 - Potential for selecting station size in the core

See Jan Geralt's talk....

AA-CoDR

SKA-AAVE

Characteristic	1. Single element	2. Dual: separate arrays	3. Dual: sl	hared arrays
Element – LNA matching	Difficult due to wide frequency range	Easier due to two narrower frequency ranges	As 2.	Single or dual?
Filling factor, station	Reducing filling factor at high frequencies.	Each array has lower frequency range, increased the FF is at high frequencies.	As 2.	dual?
Filling factor, core	The core filling factor will be the same or similar to a station. (see above)	With two AA-low cores, the FF will be the same or similar to the stations at the same frequencies.	reduced du	ing factor is substantially e to there being unused ent at any specific frequency.
Land area usage	Minimum. The high frequencies are completely integrated in a single array.	Higher due to there being two completely distinct arrays.	higher than	the same or potentially 2. Could be increased by use tations in the core.
Beam predictability	All elements are identical at specific frequencies leading to a well predicted beam.	Each frequency has a specific homogenous array, so well predictable beams.	As 2.	
Sensitivity over frequency	Determined by the fixed element count and if the array is still in the sparse regime.	The high and low frequency sensitivity is set in two bands dependant on element count.		
Processing reqts: System	A single array with high bandwidth connections.	The core will consist of two distinct arrays, each handled in a similar way to 1.		l consist of two adjacent ably using one station system.
Processing reqts: Spectral filter.	The spectral filter will have to handle the full bandwidth of the array.	More spectral filters due to the increased no. of elements –each only handles the bandwidth of the element.	elements in	nly as many spectral filters as the biggest array. This will similar to 1.
Processing reqts: Specific survey speed.	High survey speeds at high frequencies will be expensive in beamforming &data transport.	The size of the beams is kept higher due to each array minimising the under- sampling of elements.	As 2.	
Cost (will need to be reviewed as a system)	Single element may be more expensive than 2 dual elements. One high performance processing system.	There are two network systems, two processing systems. Each may be cheaper than in 1. However, it is likely that the total will be more expensive.	cheaper tha	sing system should be an 1. or 2. but less capable in stantaneous bandwidth. sts as 2.
	Only one cabling network. Minimum deployment costs.	Each element should be low cost Deployment costs are high.	Deploymen and interco	t cost is high with two arrays nnect.

Single or Dual: Philosophy

Dual: probably too expensive/will get cut to a single array **Single:** may not work well over the full band

So:

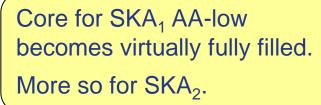
- Meet SRS for performance of single element array over crucial science: 70-~200MHz;
- 2. Maximise performance over 200-450MHz, there is good science;
- 3. Simulate/measure actual performance achieved at the high frequencies;
- 4. If not to SRS, then evaluate with scientists to determine if acceptable;
- 5. If yes: go ahead. If not revert to dual system.

In a cost constrained system, may not meet SRS at all with dual array

- Increasing overhead with many smaller stations
- Possibly increasing station processor complexity with large arrays
- Total data rate to correlator for a fixed survey speed remains constant whatever number of stations

BUT

 Correlator and central processor demands become more challenging


Station size largely determined by central processing costs

High Level System Description

Core "stations" are not separated – there is a "sea" of elements

Design options/considerations to be made:

- Non-circular "stations" easier? e.g. Square or hexagonal?
- Maximising the sensitivity from each element:
 - overlapping "stations"?
 - smaller "stations" (how small) with more correlation?
- Apodising element density within areas of the core:
 - Benefit? Save money?

Core for SKA₁ AA-low becomes virtually fully filled. More so for SKA₂.

Core "stations" are not separated – there is a "sea" of elements

Design options/considerations to be made:

- Non-circular "stations" e
- Maximising the sensitivity frameach element:
 - overlapping "stations"?
 - smaller "stations" (how small) with more correlation?
- Apodising element density within
 - Benefit? Save money?

Correlation goes up as n², but incoming data rate is constant

Implies interconnected "station

processing", especially for SKA₂

AA-CoDR

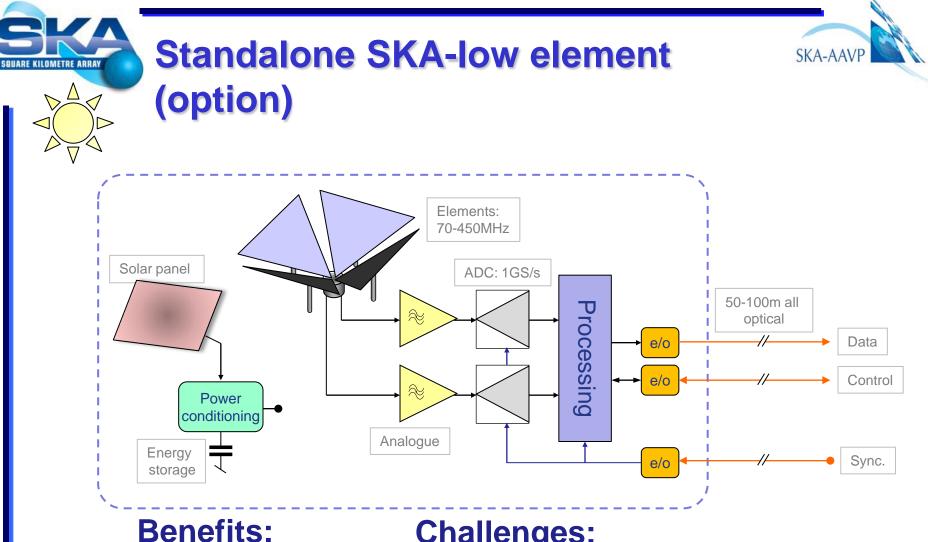
SKA-AAVI

Where to digitise?

	At element	At processor
RFI	Maximised	Minimised
Phase stability	LNA & Filters + Clock distribution	LNA + Filters + Second stage Gain + Cables
Data transport	Digital possibly over fibre	RF over copper
Power	At element or over copper	Over RF cable or at element
Lightning protection	Can be good if link is fibre	Can be challenging if link is copper
Bandpass	Very good	Equalization after transport
Cross talk	Minimised between elements and polarizations	Dependent on screening and design of RF boards

Where to digitise?

	At element	At processor	
RFI	Maximised	Minimise	
Phase stability	LNA & Filters + Clock distribution	Filters + cond stage Gain + Cables	
Data transport	Relatively safe option	ver copper	
	Likely to require distributed		
Power	digitisation around station. (Cable cost and range)	RF cable or at ent	
Lightning protection	Requires good, stable analo design	gue be challenging if s copper	
Bandpass	Very good	Equalization after transport	
Cross talk	Minimised between elements and polarizations	Dependent on screening and design of RF boards	


Where to digitise?

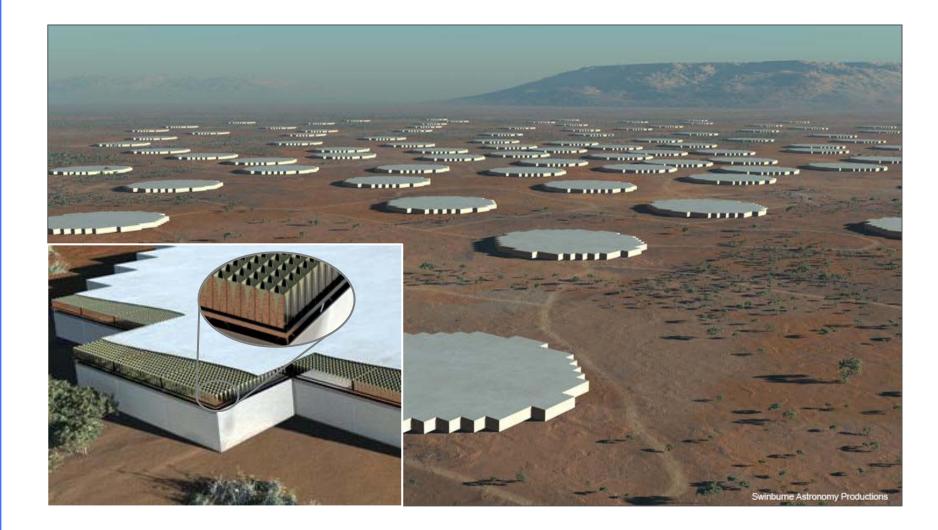
		At element	At processor
	RFI	Martinised	Minimisea
	Phase stability	NA & Filters + Clock distribution	Cond stage Gain +
Mor	e stable	vively safe option	ver copper
digi	uires: low power, quiet isers. Low cost short range cal drivers.	 / to require distributed sation around station. e cost and range) 	RF cable or at ent
Like	ly, requires custom chips	ires good, stable analo	gue be challenging if
No	option to upgrade digitisers	,n	ls copper
	Danupass	very good	Equalization after transport
	Cross talk	Minimised between elements and polarizations	Dependent on screening and design of RF boards

SQUARE KILOMETRE ARRAY

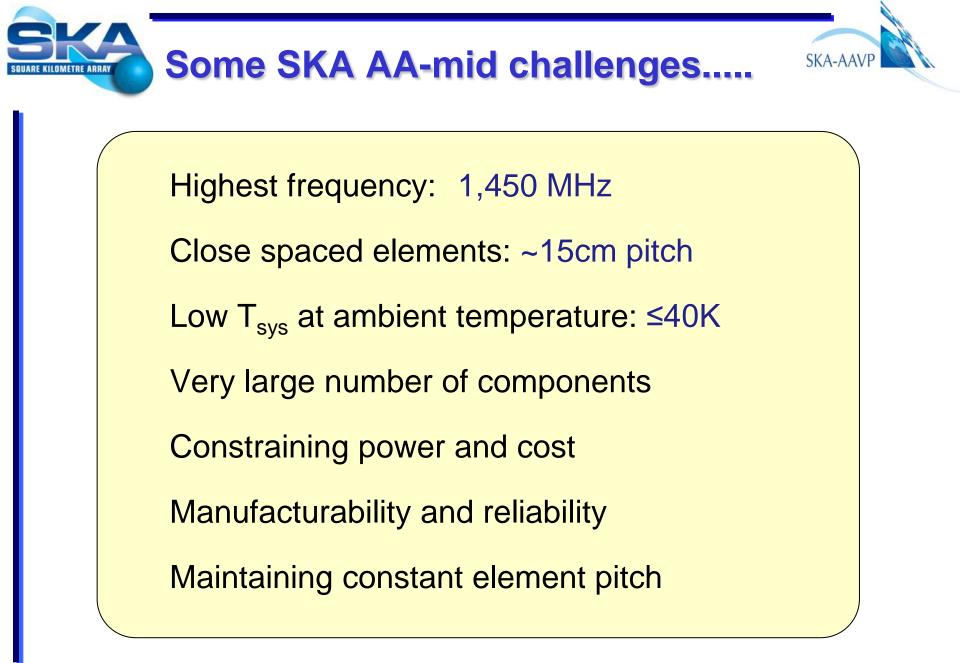
Integrated single unit No copper connection Easy to deploy Minimum RFI Lightning "immunity"

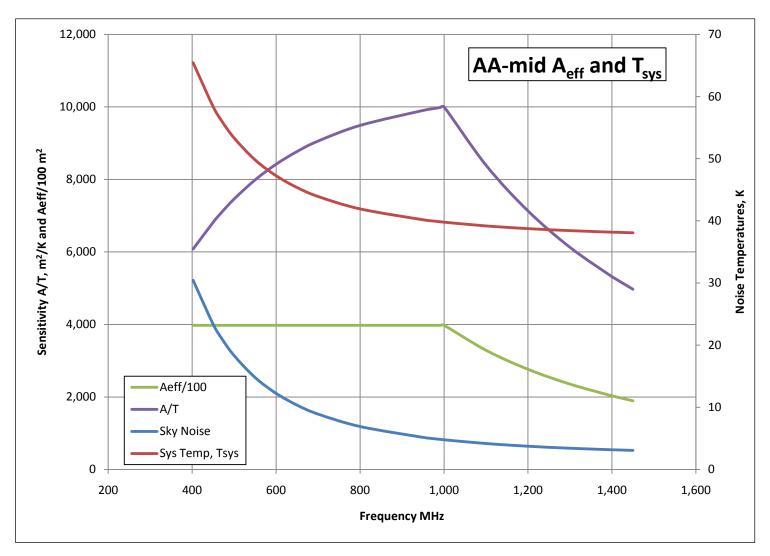
Challenges:

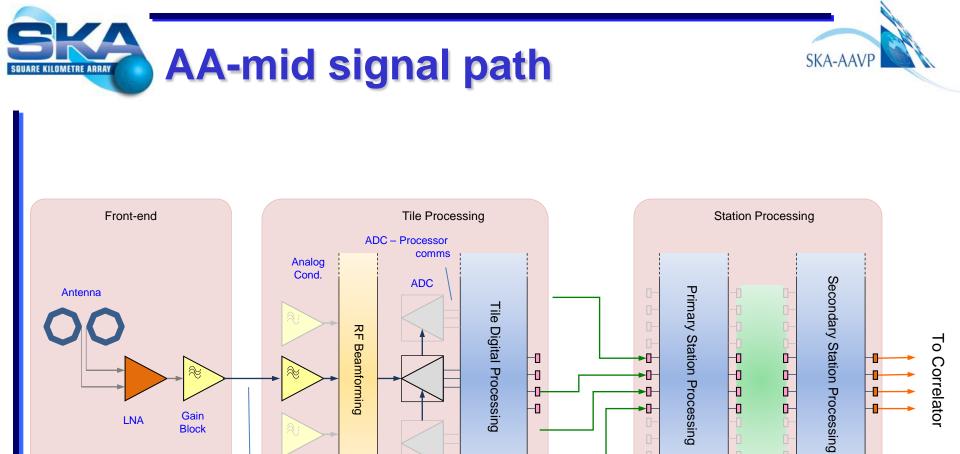
Low total power Integration Manufacturability Packaging


No need for digitisation boxes

April 2011




April 2011



AA-CoDR

April 2011

Signal

Transport

High Level System Description

Tile - station processor

optical comms

Clock

Distribution

AA-CoDR

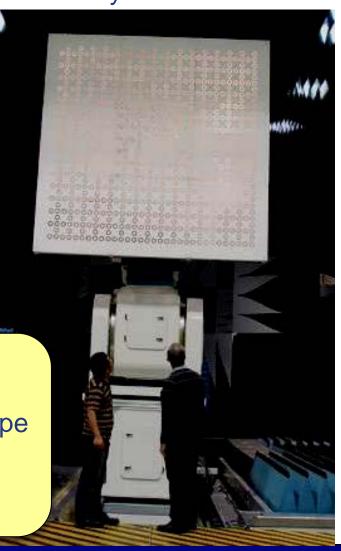
Wide area

optical comms

optical

interconnect

AA-mid elements and array



Vivaldi array - EMBRACE

Dense array design, largely decided, select:

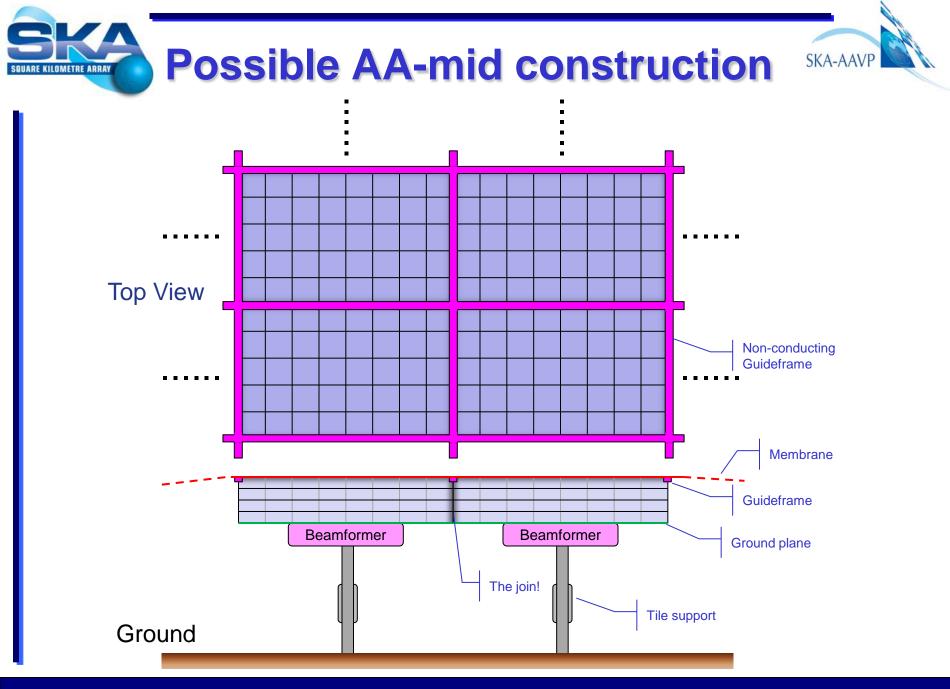
- Element pitch for frequency range & element type
- Element type and construction technique
- LNA: differential or single ended

ORA array - SKADS

SKA-AAVP

High Level System Description

AA-CoDR


1st stage Beamforming technology

1

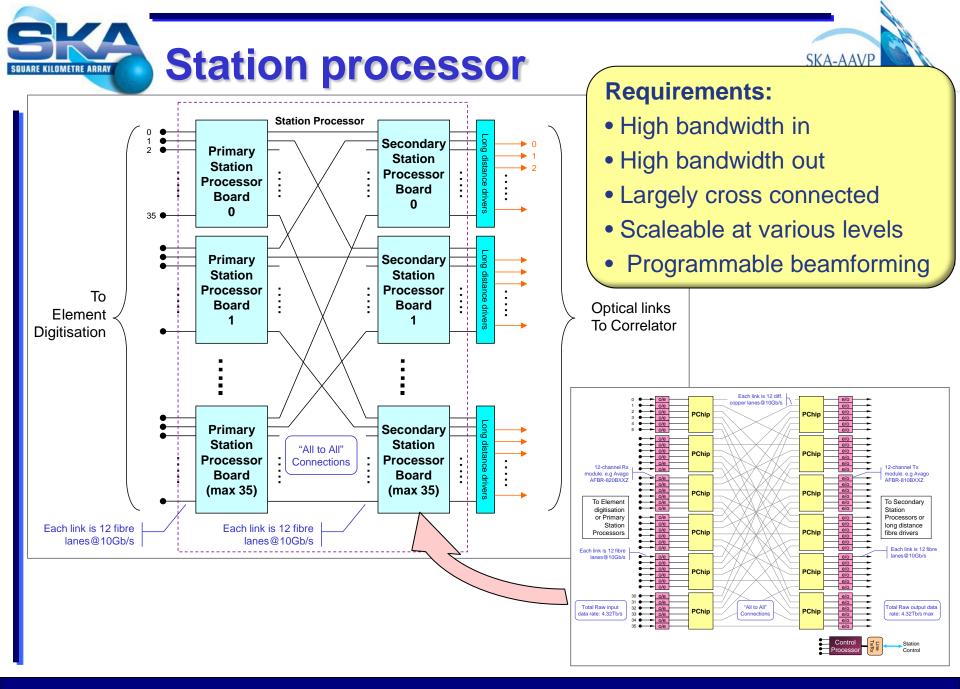
KILOMETRE ARRAY

Tech.	Technique	Benefits	Disadvantages	Comments
Analogue		Cheap – at present	Each beam has own hardware Limited calibration ability Stability over time & temp	Analogue systems require more hardware for more performance
	Phase shift	Integrated on chip	Limited bandwidth	Useful technology today and in AAVS1
	True time delay	Full bandwidth	Large, hard to integrate. Harder for low freq.	There are early trials of integrated TTD
Digita	I	Very flexible Can create many beams	Power and cost high?	Digital better and cheaper over time.
	Frequency Domain	Excise some RFI immediately Good calibration and flatten bandpass Can extract just the desired bands	Requires digitisation and processing resources.	Very flexible, requires Poly Phase filter per channel which is expensive. More FoV is cheap
	Time domain	Time resolution Reduced processing load	No RFI excision Harder to calibrate Interpolation precision	No PFF per channel, but keeps full bandwidth for B/F

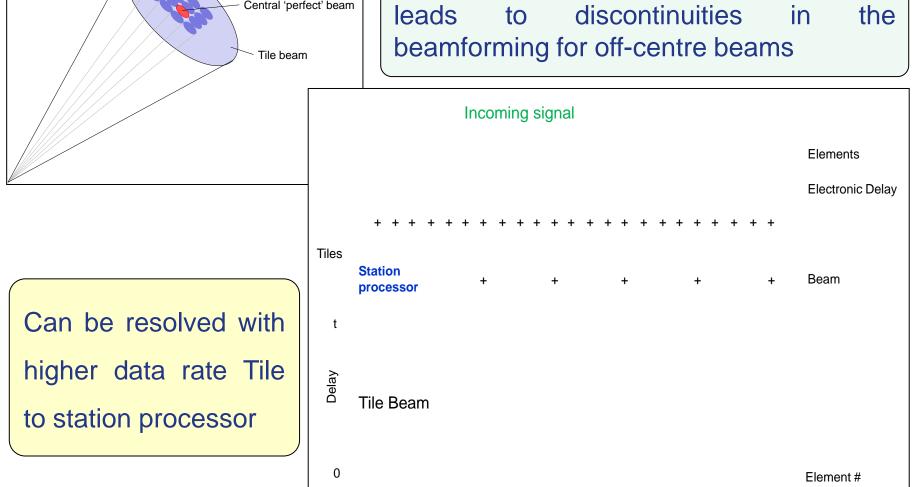
April 2011

High Level System Description

AA-CoDR



- Station level beamforming on all the tiles
- Distributes the clock information for all the tiles
- Station calibration calculations and corrections (using the tile processors)
- Transmits observation beams to the correlator
- Station monitoring and control functions



_April 2011

High Level System Description

AA-CoDR

Station beams Filling "Tile beams" with station beams

April 2011

SUARE KILOMETRE ARRAY OUTput data rate & array performance -AAVP

- The output data rate defines the performance of the array
- A better measure than "beams" since it considers flexible use of data between bandwidth and direction.
- Front end analogue beamforming restricts areas of sky that can be observed concurrently
- Changing the number of bits/sample for different observation types maximises performance
- No a problem for correlator which only "sees" total data rate
- Post-processor needs to interpret blocks of data

Build flexibility into the Station processor

Decisions, decisions....

AA-CoDR

Most sub-systems: "just" design for the specification

AA-low

- Front-end
 - Single/dual element array
 - Array layout design
 - Element type
 - Regular tiles or individual elements
- Signal processing
 - Any analogue beamforming?

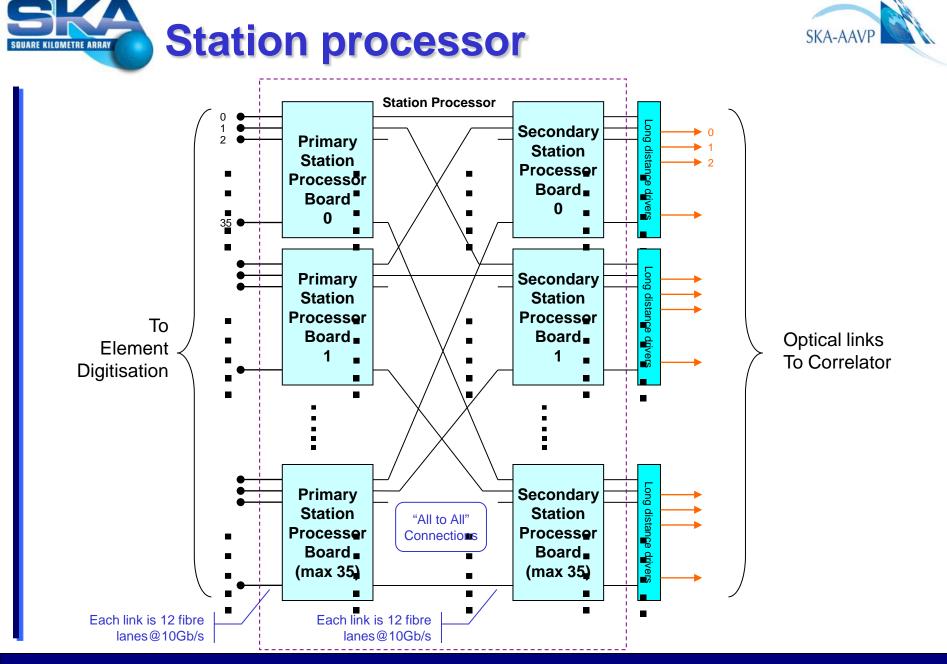
April 2011

- Location of digitisation
- Beamform in clusters?

AA-mid

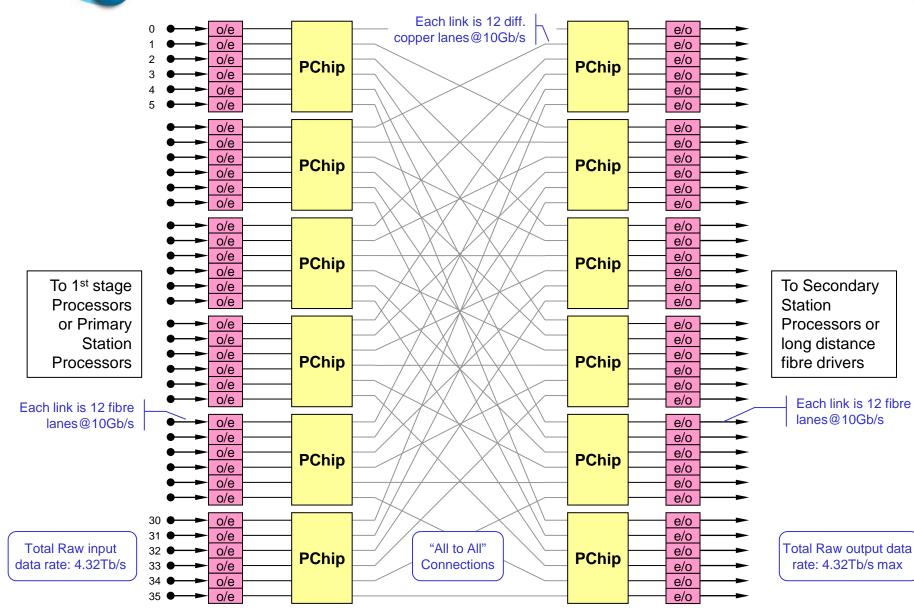
- Front-end
 - Element type
 - Element pitch
 - Single ended or differential LNA
- Signal processing
 - Amount of analogue beamforming
 - Data rate from Tile
 beamformer to Station
 Processor

See Implementation talk....



- Very high general filling factor
- Probably a "sea of elements"
- Placing the processing Bunkers may put in discontinuities, this will need to be simulated
- May well be necessary to have specified array sizes including overlapping for short baselines

SKA-AA


April 2011

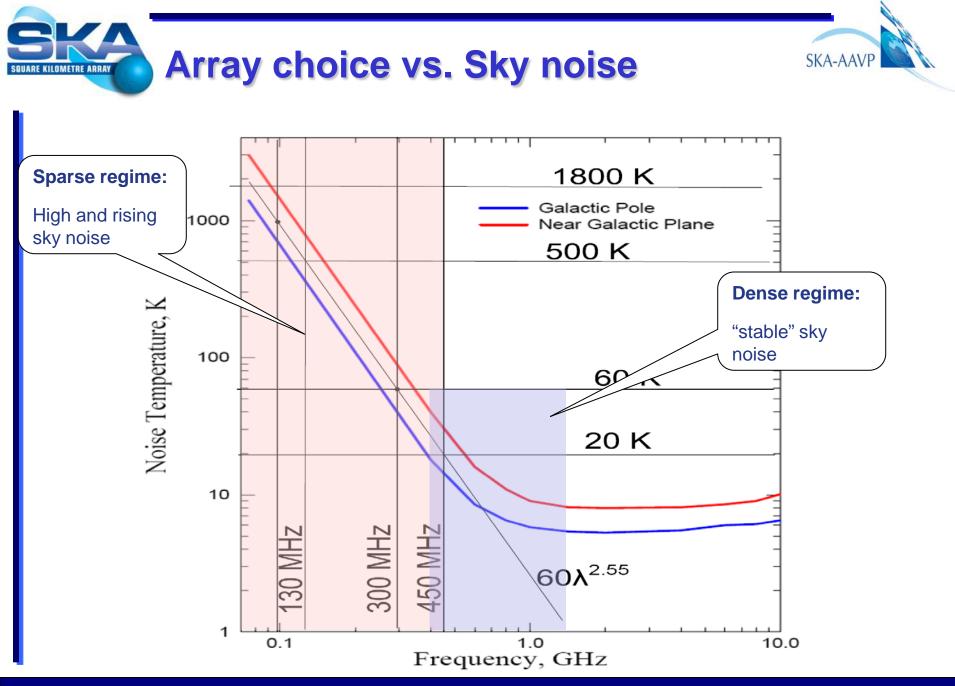
High Level System Description

AA-CoDR

Station Processor Board

QUARE KILOMETRE ARRAY

One or two elements?


	One element	Two elements
Cost	Minimised	Higher Doubles # RF chains, ground planes and interconnects
Element performance	Some compromise across band	Less compromise across band
Station design	Forces highly sparse design at top-end of band	Reduces sparcity while maintaining sensitivity
Power	Minimises power	Increases power
Filling factor	Good filling factor at low <i>f</i>	Poor filling factor unless multiple cores
Matching	Challenging	Easier

	a l	/ ·		
	Characteristic	RF Beamforming	Digital Beamforming	Remarks/Timeline
QUARE KILOMETRE AI	Implementation	Integrated into analogue chips. Each chip produces multiple beams from each block of input channels.		
	Beam generation	Each beam is formed by phase shifting each input and then summed for each chip. True time delay technology integrated onto chips is not currently proven, external delays become to large for practical implementation on a dense high frequency array.	frequency band. Each channel may be calibrated for amplitude. Polarisation may be corrected as a function of frequency. Each channel may be	and cheap to implement for restricted numbers of beams. The digital solution is more complex to implement the basic system, but is very flexible for providing
Beam		Each beam operates as a single frequency channel. This will restrict the number of tile beams that may be produced independently.		
analo digita	Multiple beams	Each Tile beam needs to be produced via specific hardware within the beamformer chip. The configuration is fixed by the architecture design.		for output data requirements.
			constraints of output data rates and processing.	
	Bandwidth	Assuming that the beamformer is using phase shifting for time delays, or a frequency dependent time delay then the bandwidth will be restricted to some fraction of the operating frequency for each beam. Wider bandwidths can be constructed using multiple beams.	bandwidth available from the elements and analogue conditioning. This is because each of the sub-beams can be treated as a narrow	analogue system.
		If true time delay can be produced then wider bandwidths up to the operational range of the elements and analogue system can be produced.		
	Bandpass corrections	The bandpass corrections for each element need to be made in an overall fashion. It is unlikely that they can be adjusted for changing conditions. The corrections made will be identical for each beam.	enough for effective digitization to take place.	to variation due to temperature and ageing effects; using relatively low cost components is liable to result in ripples in the bandpass. These can only be taken
			The bandpass can be corrected as a function of frequency and if necessary by beam; each sub- band can be independently changed.	out in a gross sense with RF beamforming, but can be corrected in detail by the digital system.
	Calibration	The analogue beamformer can provide element level amplitude and approximate time delay calibration; neither of these are as a function of frequency. It is unlikely to be able to provide	direction dependant calibration per beam. The calibration can be high resolution amplitude,	providing high dynamic range beams, of know characteristics.
		element level polarisation calibration since this is		If the ability to calibrate at the element level then a digital system is probably
April 201		highly frequency and direction dependant.	Since many beams can be formed it is viable to dedicate a number of sub-beams to observe calibrated sources during observations to refine	essential, however, if the AA can be calibrated at the Tile level, then an

	a l	/ ·		
	Characteristic	RF Beamforming	Digital Beamforming	Remarks/Timeline
SQUARE KILOMETRE AI	Implementation	Integrated into analogue chips. Each chip produces multiple beams from each block of input channels.		
	Beam generation	Each beam is formed by phase shifting each input and then summed for each chip. True time delay technology integrated onto chips is not currently proven, external delays become to large for practical implementation on a dense high frequency array.	frequency band. Each channel may be calibrated for amplitude. Polarisation may be corrected as a function of frequency. Each channel may be	and cheap to implement for restricted numbers of beams. The digital solution is more complex to implement the basic system, but is very flexible for providing
Beam		Each beam operates as a single frequency channel. This will restrict the number of tile beams that may be produced independently.		
analo digita	Multiple beams	Each Tile beam needs to be produced via specific hardware within the beamformer chip. The configuration is fixed by the architecture design.		for output data requirements.
			constraints of output data rates and processing.	
	Bandwidth	Assuming that the beamformer is using phase shifting for time delays, or a frequency dependent time delay then the bandwidth will be restricted to some fraction of the operating frequency for each beam. Wider bandwidths can be constructed using multiple beams.	bandwidth available from the elements and analogue conditioning. This is because each of the sub-beams can be treated as a narrow	analogue system.
		If true time delay can be produced then wider bandwidths up to the operational range of the elements and analogue system can be produced.		
	Bandpass corrections	The bandpass corrections for each element need to be made in an overall fashion. It is unlikely that they can be adjusted for changing conditions. The corrections made will be identical for each beam.	enough for effective digitization to take place.	to variation due to temperature and ageing effects; using relatively low cost components is liable to result in ripples in the bandpass. These can only be taken out in a gross sense with RF baamforming but can be corrected in
			The bandpass can be corrected as a function of frequency and if necessary by beam; each sub- band can be independently changed.	
	Calibration	The analogue beamformer can provide element level amplitude and approximate time delay calibration; neither of these are as a function of frequency. It is unlikely to be able to provide	direction dependant calibration per beam. The calibration can be high resolution amplitude,	providing high dynamic range beams, of know characteristics.
		element level polarisation calibration since this is		If the ability to calibrate at the element level then a digital system is probably
April 201		highly frequency and direction dependant.	Since many beams can be formed it is viable to dedicate a number of sub-beams to observe calibrated sources during observations to refine	essential, however, if the AA can be calibrated at the Tile level, then an

April 2011

High Level System Description

