
July 25-29, 2011July 25-29, 2011 1CALIM '11CALIM '11

Fast W-Projection Gridding on GPUsFast W-Projection Gridding on GPUs

John W. RomeinJohn W. Romein

Stichting ASTRON (Netherlands Institute for Radio Astronomy)
Dwingeloo, the Netherlands

July 25-29, 2011July 25-29, 2011 2CALIM '11CALIM '11

Gridding

vis
conv

grid

(~100x100)

(~4096x4096)

July 25-29, 2011July 25-29, 2011 3CALIM '11CALIM '11

Two Problems

1. lots of FLOPS

2. add to memory: slow!

vis
conv

grid

(~100x100)

(~4096x4096)

July 25-29, 2011July 25-29, 2011 4CALIM '11CALIM '11

Two Solutions

1. lots of FLOPS ➜ use GPUs

2. add to memory: slow! ➜ avoid

vis
conv

grid

(~100x100)

(~4096x4096)

July 25-29, 2011July 25-29, 2011 5CALIM '11CALIM '11

Outline

 GPU introduction
 W-projection gridding on GPUs
 performance results

July 25-29, 2011July 25-29, 2011 6CALIM '11CALIM '11

GPUs

July 25-29, 2011July 25-29, 2011 7CALIM '11CALIM '11

GPUs

 powerful compute device
 highly parallel
 device memory

 “limited” bandwidth

CPU (E5620) GPU (GTX 580) GPU / CPU

cores 4 512 128

threads 8 16,384 2,048

vector length 4

GFLOPS 76.8 1,581 20.6

memory BW (GB/s) 25.6 192.4 7.52

TDP (W) 80 244 3.05

July 25-29, 2011July 25-29, 2011 8CALIM '11CALIM '11

GPU Compute Model

 model:
 move data CPU ➜ GPU
 run kernel on GPU
 move result GPU ➜ CPU

 PCIe often bottleneck
 overlap computations and communication

July 25-29, 2011July 25-29, 2011 9CALIM '11CALIM '11

GPU Features

+ + + + +

= = = = ==

 core hierarchy: 16 multi-processors (SMs) of 32 cores
 SMs independent
 cores in SM cooperate

 SIMD
 coalescing
 latency hiding: ≤32 threads/core

 textures
 efficient 2D/3D caching
 interpolation (indexed by floating point number)

July 25-29, 2011July 25-29, 2011 10CALIM '11CALIM '11

GPU Memories

 host*

 on CPU
 device*

 on GPU
 texture*

 2D/3D caching, 2D/3D interpolation, normalization, ...
 constant*

 shared

 48KB per SM
 register

(* = cached)

slow

fast

July 25-29, 2011July 25-29, 2011 11CALIM '11CALIM '11

GPU Programming

 CPU code in C/C++
 GPU code in CUDA or OpenCL

July 25-29, 2011July 25-29, 2011 12CALIM '11CALIM '11

GPU Languages

 OpenCL
 Nvidia, AMD, ...
 CPU side: C horrible, C++ very pleasant

 CUDA
 Nvidia only
 better support for latest GPU features
 2%~20% faster
 matured more

July 25-29, 2011July 25-29, 2011 13CALIM '11CALIM '11

CUDA Example

__device__ float array[1024];

__global__ void zero_array()
{

array[threadIdx.x] = 0;
}

int main()
{

zero_array<<<1, 1024>>>();
return 0;

}

July 25-29, 2011July 25-29, 2011 14CALIM '11CALIM '11

Back To Gridding

July 25-29, 2011July 25-29, 2011 15CALIM '11CALIM '11

W-Projection Gridding

vis
conv

grid
 (u,v) not exact grid points
 oversampling

 choose most appropriate conv. matrix

(int(u), int(v))depends on frac(u), frac(v), w

July 25-29, 2011July 25-29, 2011 16CALIM '11CALIM '11

Where Is The Data?

vis
conv

grid
 grid: device memory
 conv. matrices: texture
 vis. + (u,v,w): shared memory

July 25-29, 2011July 25-29, 2011 17CALIM '11CALIM '11

Placement Movement

vis
conv

grid
 per baseline:

 (u,v,w) changes slowly
 grid locality

t

f

July 25-29, 2011July 25-29, 2011 18CALIM '11CALIM '11

Use Locality

vis
conv

grid

 reduce #memory accesses
 X: one thread
 accumulate additions in register
 until conv. matrix slides off

July 25-29, 2011July 25-29, 2011 19CALIM '11CALIM '11

But How ???

vis
conv

grid
 1 thread / grid point

 which visibilities contribute?
 severe load imbalance

July 25-29, 2011July 25-29, 2011 20CALIM '11CALIM '11

An Unintuitive Approach

vis
conv

grid

 conceptual blocks of conv. matrix size

July 25-29, 2011July 25-29, 2011 21CALIM '11CALIM '11

An Unintuitive Approach

vis
conv

grid 1 thread monitors all X
 at any time: conv. matrix covers 1 X!!!

July 25-29, 2011July 25-29, 2011 22CALIM '11CALIM '11

An Unintuitive Approach

vis
conv

grid
 thread computes current:

 X grid point
 X conv. matrix entry

July 25-29, 2011July 25-29, 2011 23CALIM '11CALIM '11

An Unintuitive Approach

vis
conv

grid

 (atomically) adds data if moved to another X

July 25-29, 2011July 25-29, 2011 24CALIM '11CALIM '11

An Unintuitive Approach

vis
conv

grid #threads = block size
 too many threads ➜ do in parts

July 25-29, 2011July 25-29, 2011 25CALIM '11CALIM '11

(Dis)Advantages

☹ overhead

☺ < 1% grid-point memory updates

vis
conv

grid

July 25-29, 2011July 25-29, 2011 26CALIM '11CALIM '11

Work Distribution

 baselines: spread over SMs
 times: threads in SM
 frequencies: threads in SM
 polarizations: single thread

July 25-29, 2011July 25-29, 2011 27CALIM '11CALIM '11

Performance Measurements

July 25-29, 2011July 25-29, 2011 28CALIM '11CALIM '11

Performance Tests Setup

 (u,v,w) from real observation (6 hour)

#stations 44
#channels 16
integration time 10 s
observation time 6 h
conv. matrix size ≤ 128x128
oversampling 8x8
#W-planes 128
grid size 4096x4096

July 25-29, 2011July 25-29, 2011 29CALIM '11CALIM '11

CUDA Performance

 ≤37x dual CPU
 16x16:

 insufficient #threads
 more atomic adds
 (>1 baseline/SM)

 independent of #W-planes
 PCIe bus utilization: 17%–0.5%

0

50

100

150

200

250

300

350

0

10

20

30

40

GTX 580
2 x E5600

conv. matrix size

G
F

L
O

P
S

g
ig

a
-p

ix
e

l-
u

p
d

a
te

s-
p

e
r-

se
co

n
d

16x16 32x32 64x64 128x128

July 25-29, 2011July 25-29, 2011 30CALIM '11CALIM '11

#Threads

 128x128 conv. matrix

0 256 512 768 1024
0

50

100

150

200

250

300

350

0

10

20

30

40

#threads / SM

G
F

L
O

P
S

g
ig

a
-p

ix
e

l-
u

p
d

a
te

s-
p

e
r-

se
co

n
d

July 25-29, 2011July 25-29, 2011 31CALIM '11CALIM '11

OpenCL Performance

 language bit restrictive
 no 1D textures
 no atomic add ➜ use atomic cmpxchg

 Nvidia GTX 580
 18% slower than CUDA
 multi-GPU/host-threads issues

 AMD HD 6970
 limited grid size (2048 x 2048)
 13-163x slower than GTX 580!

 atomic ops slow

July 25-29, 2011July 25-29, 2011 32CALIM '11CALIM '11

Multi-GPU Scaling

 eight Nvidia GTX 580s

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

nr. GPUs

G
F

L
O

P
S

 131,072 threads!
 scales perfectly
 296x faster than dual CPU

July 25-29, 2011July 25-29, 2011 33CALIM '11CALIM '11

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

nr. GPUs

P
o

w
e

r
co

n
su

m
p

tio
n

 (
W

a
tt

)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

nr. GPUs

G
F

L
O

P
S

 /
 W

a
tt

Green Computing

 28x more energy efficient than dual CPU

July 25-29, 2011July 25-29, 2011 34CALIM '11CALIM '11

Comparison With Other GPU Gridders

 van Amesfoort et. al. [CF'09]
 private grid per block ➜ very small grids
 3.5~6.5 x (compensated for faster hardware)

 MWA gridder (Edgar et. al. [CPC'11])
 search visibilities that potentially add to grid point
 6.1~8.0 x

 Humphreys & Cornwell [SKA memo 132, '11]
 adds directly to grid in memory
 8.5~10.3 x

July 25-29, 2011July 25-29, 2011 35CALIM '11CALIM '11

Future Work

 work in progress

 performance counters
 use hardware interpolation instead of oversampling/W-planes

 LOFAR gridder

 combine with A-projection

July 25-29, 2011July 25-29, 2011 36CALIM '11CALIM '11

Conclusions

 efficient GPU gridding algorithm
 minimize memory accesses

 CUDA more mature than OpenCL
 6~10x faster than other gridders
 37x faster than dual CPU

 scales perfectly on 8 GPUs
 energy efficient

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

