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Gridding
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Two Problems

1. lots of FLOPS

2. add to memory: slow!
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Two Solutions

1. lots of FLOPS ➜ use GPUs

2. add to memory: slow! ➜ avoid

vis
conv

grid

(~100x100) 

(~4096x4096)
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Outline

 GPU introduction
 W-projection gridding on GPUs
 performance results
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GPUs
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GPUs

 powerful compute device
 highly parallel
 device memory

 “limited” bandwidth

CPU (E5620) GPU (GTX 580) GPU / CPU

cores 4 512 128

threads 8 16,384 2,048

vector length 4

GFLOPS 76.8 1,581 20.6

memory BW (GB/s) 25.6 192.4 7.52

TDP (W) 80 244 3.05
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GPU Compute Model

 model:
 move data CPU ➜ GPU
 run kernel on GPU
 move result GPU ➜ CPU

 PCIe often bottleneck
 overlap computations and communication
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GPU Features

+ + + + +

= = = = ==

 core hierarchy: 16 multi-processors (SMs) of 32 cores
 SMs independent
 cores in SM cooperate

 SIMD
 coalescing
 latency hiding: ≤32 threads/core

 textures
 efficient 2D/3D caching
 interpolation (indexed by floating point number)
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GPU Memories

 host*

 on CPU
 device*

 on GPU
 texture*

 2D/3D caching, 2D/3D interpolation, normalization, ...
 constant*

 shared

 48KB per SM
 register

(* = cached)

slow

fast
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GPU Programming

 CPU code in C/C++
 GPU code in CUDA or OpenCL
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GPU Languages

 OpenCL
 Nvidia, AMD, ...
 CPU side: C horrible, C++ very pleasant

 CUDA
 Nvidia only
 better support for latest GPU features
 2%~20% faster
 matured more
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CUDA Example

__device__ float array[1024];

__global__ void zero_array()
{

array[threadIdx.x] = 0;
}

int main()
{

zero_array<<<1, 1024>>>();
return 0;

}
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Back To Gridding
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W-Projection Gridding

vis
conv

grid
 (u,v) not exact grid points
 oversampling

 choose most appropriate conv. matrix

(int(u), int(v))depends on frac(u), frac(v), w



July 25-29, 2011July 25-29, 2011 16CALIM '11CALIM '11

Where Is The Data?

vis
conv

grid
 grid: device memory
 conv. matrices: texture
 vis. + (u,v,w): shared memory
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Placement Movement

vis
conv

grid
 per baseline:

  (u,v,w) changes slowly
 grid locality

t

f
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Use Locality

vis
conv

grid

 reduce #memory accesses
 X: one thread
 accumulate additions in register
 until conv. matrix slides off
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But How ???

vis
conv

grid
 1 thread / grid point

 which visibilities contribute?
 severe load imbalance
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An Unintuitive Approach

vis
conv

grid

 conceptual blocks of conv. matrix size
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An Unintuitive Approach

vis
conv

grid 1 thread monitors all X
 at any time: conv. matrix covers 1 X!!! 
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An Unintuitive Approach

vis
conv

grid
 thread computes current:

 X grid point
 X conv. matrix entry
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An Unintuitive Approach

vis
conv

grid

 (atomically) adds data if moved to another X
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An Unintuitive Approach

vis
conv

grid #threads = block size
 too many threads ➜ do in parts
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(Dis)Advantages

☹ overhead

☺ < 1% grid-point memory updates

vis
conv

grid
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Work Distribution

 baselines: spread over SMs
 times: threads in SM
 frequencies: threads in SM
 polarizations: single thread
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Performance Measurements
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Performance Tests Setup

 (u,v,w) from real observation (6 hour)

#stations 44
#channels 16
integration time 10 s
observation time 6 h
conv. matrix size ≤ 128x128
oversampling 8x8
#W-planes 128
grid size 4096x4096
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CUDA Performance

 ≤37x dual CPU
 16x16:

 insufficient #threads
 more atomic adds
 (>1 baseline/SM)

 independent of #W-planes
 PCIe bus utilization: 17%–0.5%
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#Threads

 128x128 conv. matrix
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OpenCL Performance

 language bit restrictive
 no 1D textures
 no atomic add ➜ use atomic cmpxchg

 Nvidia GTX 580
 18% slower than CUDA
 multi-GPU/host-threads issues

 AMD HD 6970
 limited grid size (2048 x 2048) 
 13-163x slower than GTX 580!

 atomic ops slow
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Multi-GPU Scaling

 eight Nvidia GTX 580s
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 131,072 threads!
 scales perfectly
 296x faster than dual CPU
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 28x more energy efficient than dual CPU
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Comparison With Other GPU Gridders

 van Amesfoort et. al. [CF'09]
 private grid per block ➜ very small grids
 3.5~6.5 x (compensated for faster hardware)

 MWA gridder (Edgar et. al. [CPC'11])
 search visibilities that potentially add to grid point
 6.1~8.0 x

 Humphreys & Cornwell [SKA memo 132, '11]
 adds directly to grid in memory
 8.5~10.3 x
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Future Work

 work in progress

 performance counters
 use hardware interpolation instead of oversampling/W-planes

 LOFAR gridder

 combine with A-projection
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Conclusions

 efficient GPU gridding algorithm
 minimize memory accesses

 CUDA more mature than OpenCL
 6~10x faster than other gridders
 37x faster than dual CPU

 scales perfectly on 8 GPUs
 energy efficient
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