

ASKAP Status

Tim Cornwell, ASKAP Computing Project Lead Australian Square Kilometre Array Pathfinder

Australian SKA Pathfinder = 1% SKA

- Fastest survey radio telescope in the world
- Up to 2.4 Tpixel every 8 hours
- Sited at Boolardy, Western Australia
- 36 antennas compared to ~ 3600 for SKA
- First 6 antennas installed now

- 150MA\$
- Early test observations December 2011
- Full observing 2013
- Demonstrates wide field of view technology for SKA

Phased arrays for large field of view

- Located on the ground
 - Dense or sparse
 - Coordinate system = Earth
 - Can see whole sky
 - Strong projection effects

- Located at the antenna focal point
 - Coordinate system = celestial sphere
 - Can only see limited field of view
 - No projection effects
 - With suitable antenna mount

ASKAP Phased Array Feed

- Major area of R&D for the ASKAP project
- Development of small "proof of concept" article (5x4)
- 1st version of 5x4 at Parkes for testing late 2009, 2010
 - Problems with reliability etc
- 2nd version went to Parkes for further testing (Oct Nov 2010), Aperture Array
 - Significantly improved performance
 - 60 deg Tsys over 1 1.3 GHz
- 9x10 array to Parkes (July 2011)
 - 50 deg Tsys
- Second full size PAF:
 - Scheduled for MRO deployment in early Q3 2011

PAF – dry fit-up

ASKAP three axis antenna

Comparison of imaging speed of ATCA and ASKAP

231 hours observing with ATCA

2 hours observing with ASKAP

SST2 (run9)

- 30" 8 hour synthesis
- SKADS model
- Peak = 2.6Jy
- Edge effects due to rolloff in sensitivity
- Data set ~ 1.1 TB
- ~ 1800 CPU-hours
- ~ 190 GB memory

SST2 (run9) zoomed

SST2 (run9) zoomed

CSIRO

Site Layout

ASKAP Antenna configuration

- Compact 2km core for imaging emission from neutral Hydrogen (1.420GHz)
- Extended 6km for imaging broadband emission

- Fourier plane coverage = set of 2D vector differences between antennas
- Rotates over the day to synthesise ~ full sampling

ASKAP configuration

BETA configuration

A day in the life of an ASKAP antenna

ASKAP System Architecture

CSIRO

ASKAP data flow

Murchison Radioastronomical Observatory

Pawsey High Performance Centre for SKA

T. Cornwell, July 9 2010

CSIRC

- From observing to archive with no human decision making
 - Calibrate automatically
 - Image automatically ~ 80 TB per 8 hour observation
 - Form science oriented catalogues automatically

Networking in Western Australia

Pawsey High Performance Computing Centre for SKA Science, Perth, Western Australia

- A\$80M, funded by Australian Federal government
- 8800 core machine now in operation
 - HP cluster in a box at Murdoch University: EPIC
 - ~ 88 on Top 500
 - ASKAP used EPIC as early adopters
 - Now regular use 1 Mhour till end of 2011
 - Use 10TF partition in late 2011 for early telescope testing
- Petascale system by 2013
 - 25% for radio astronomy

ASKAPsoft

- Reuse of 3rd party software
 - Spent large effort facilitating reuse
 - 72 3rd party packages in use
- Telescope Operating System
 - Built using EPICS
- Central Processor
 - Designed to support parallel, distributed processing using MPI
 - All new synthesis code
 - Duchamp source finder
 - Built using large number of 3rd party libraries: casacore, boost, wcs, LOFAR, etc.
 - For ASKAP, must scale to ~ 9000 cores

Ingest pipeline

ASKAP science processing pipelines

ASKAP data levels

EMU simulations of extended sources

EMU simulations (zoomed)

Pictor A simulations

- ASKAP
 - +/- 3h
 - DR ~ 38000
 - Ringing around hotspots

- ATCA pre CABB
 - CDFS coverage
 - DR ~ 15000

Duchamp: finding galaxies

- Most galaxies emit radiation from neutral hydrogen
 - 1420.40575177 MHz
- Search in frequency
- Derive distance using Hubble Law
 - Velocity of recession = H₀ Distance

Duchamp service

- Response to SST requests for access to current ASKAPsoft Duchamp
- ftp-based service to upload images and download results
- Runs on ASKAP cluster
- Accessible by all SSTs

ASKAP Science Processing memo

ASKAP Science Processing

ASKAP-SW-0020

Version: 0.1 Date: 10/02/2011 Project: ASKAP

Prepared by: Tim Cornwell, Ben Humphreys, Emil Lenc, Maxim Voronkov, Matthew Whiting Reviewed by: Review reference (3240):

Approved by:

Keywords:

- Complete description of all steps in science processing
- SSTs are the target audience
- First version was released 28 February
- Not all areas finalised
- Will be updated regularly

Date:

INTRODUCTION

	1.1 1.2	Copyright	8 8
	1.3	Summary	8
	1.4	Scope	8
	1.5	Status	8
	1.6	Glossary	9
	ASK	AP CONCEPTUAL TELESCOPE MODEL	10
	2.1	Overview	10
	2.2	Data flow	10
	2.3	Observing model	12
	2.4	ASKAP Array Configuration	16
	2.5	ASKAP Antenna Design	16
	2.6	ASKAP Phased Array Feeds	19
	2.7	Beamformers and Correlator	20
	2.8	Central Processor	21
	2.9	Processing pipelines	23
	2.10	Observing with ASKAP	24
	2.11	Description of processing steps	26
		2.11.1 Data Ingest	26
		2.11.2 RFI Excision	26
		2.11.3 Identification and removal of bad data	27
		2.11.4 The Sky Model	27
	2.12	Continuum subtraction	28
	2.13	Approach to Calibration And Imaging	29
		2.13.1 Normal equations	29
		2.13.2 Solution of normal equations	30
	2.14	Calibration	33
		2.14.1 Effects requiring calibration	33
		2.14.2 Solution for calibration parameters	33
	2.15	Imaging	35
		2.15.1 Properties of linear mosaics	35
		2.15.2 Gridding	41
		2.15.3 Wide field imaging	41
		2.15.4 Peeling	43
		2.15.5 Time variable sources	45
		2.15.6 Pre-conditioning	45
		2.15.7 Deconvolution: Continuum Imaging	46
		2.15.8 Deconvolution: Spectral Line Imaging at 30 ^{sr} resolution	49
		2.15.9 Deconvolution: Spectral Line Imaging at 10 st resolution	49
	2.16	2.15.10 Deconvolution: Transient imaging	49
	2.16		50
		2.16.1 Overview	50
		2.16.2 Distributed processing	50
		2.16.4 Threshold Determination	51
		2.10.4 Threshold Determination	52
		2.16.6 Source Fitting and Darametrisation	52
		2.16.7 Stacking	53
		2.10.7 Sucking	33
3	SCII	ENCE ARCHIVE	53
4	POS	T-DIDELINE SCIENCE ANALYSIS	55
	103		55
5	DEF	INITIONS OF STANDARD DATA PRODUCTS	55

8

SKA2011 Forum in Banff

ASKAP Design Enhancement

- Insufficient funds to build out to 36 antennas
- Can afford to build out to 12
- In search of full funding for 36
- Meanwhile
 - Redesign PAF, analog systems, and digital backend
 - Goal is to reduce costs (mainly for SKA)
- Concentrating on demonstration of PAF Imaging
 - With 6 antenna system (BETA)
 - End of 2011

We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site.

CSIRO

Thank you

ASKAP Computing Project Lead

Phone: +61 2 9372 4261

Web: www.atnf.csiro.au

Email: tim.cornwell@csiro.au

ATNF/ASKAP

Tim Cornwell

Contact Us Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

