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 ALMAALMA

Artist's Artist's 
impressionsimpressions

● Main array 50x12-m dishesMain array 50x12-m dishes
● Compact array 12x7-m, plus 4x12-m total power Compact array 12x7-m, plus 4x12-m total power 

● 25m to ~15 km baselines in full operation25m to ~15 km baselines in full operation
● 0.8 –  6 arcsec @ 0.8 –  6 arcsec @  0.4 - 3 m0.4 - 3 mm, 0.1-km baselinem, 0.1-km baseline
● 0.005 - 0.04 arcsec @ 0.005 - 0.04 arcsec @ 0.4 –  3 mm, 15-km baseline0.4 –  3 mm, 15-km baseline

● Eventually 10 bands between 30 to ~950 GHzEventually 10 bands between 30 to ~950 GHz
● FoFoV 7 –  50 arcsec @ V 7 –  50 arcsec @ 0.4 - 3 m0.4 - 3 mm, 12-m dishesm, 12-m dishes

● Mosaicing, single dish fill-inMosaicing, single dish fill-in

● Closest pads 15m separationClosest pads 15m separation
● Nearly filled aperture at asec resolutionNearly filled aperture at asec resolution



   

● 5 x 25-m dishes, 1x32-m, sometimes Lovell 75-m5 x 25-m dishes, 1x32-m, sometimes Lovell 75-m
● Baselines 10 –  217 kmBaselines 10 –  217 km

● Broadband 1.2-1.7, 4-8, 21-26 GHz receiversBroadband 1.2-1.7, 4-8, 21-26 GHz receivers
● Optical fibres, broadband electronics (2 GHz/pol)Optical fibres, broadband electronics (2 GHz/pol)
● New WIDAR correlatorNew WIDAR correlator

● First images: 0.5 GHz bandwidth at 6 GHzFirst images: 0.5 GHz bandwidth at 6 GHz

ee-MERLIN-MERLIN

Double Quasar



   

High resolution imaging arrays

● ALMA <1300 synthesised ( <7000 pixels) per PrimaryBeam  
● Up to 8 GHz bandwidth, max. 4 x 4096 channels (2 pols)

● e-MERLIN <8000 synthesised ( <40000 pixels) per PB

● 2 GHz bw, 16 IFs, ~32000 channels (not all IFs at once)
● Early stages of ALMA (8-16 ants), e-MERLIN (5-6 ants)

● Pipelines not yet operational, testing on desktops
● Even in full ops, users will want to tweak image 

resolution, averaging etc.
● More extensive manual processing of innovations
● Teaching radio interferometry

● Typical raw datasets tens-100s Gb already



   

Limited issues considered

● No significant beam-squint nor anisoplanaticism
● Do need to image full field of view

● Confusion issues for e-MERLIN at full sensitivity
● Many ALMA sources will fill (many) primary beams 

● Both will have heterogenous antennas
● But full mix not yet being used

● Post-correlation only
● Limited configurations in comissioning
● Implementable in CASA
● Intelligible to average user with some experience

● Incremental averaging depending on data and science



   

Science target constraints

● These will override anything later in this talk
● milli-sec source variability or rapid Doppler tracking

– PSR, solar, radar, spacecraft tracking, SETI etc.
● At least 3, ideally ~10 chans per spectral line

● Spectral resolution >107 for <1 km s-1 lines 
– Even higher for e.g. maser physics/polarization

● Factorizable channelization if want to combine arrays
● Shortest spacing constrains largest spatial scale

● e-MERLIN <20x synth  (max:min baseline 217:20 m)
– Snap-shots only for bright point-like sources
– MFS helps fill aperture in long tracks ( ⪕ ½)

● Unwise to smooth to larger resolution



   

First post-correlation issues
● Spectral resolution for rfi excision

● or avoiding ALMA lines
● Delay error (/2)/ on 

continuum point at phase centre
● e.g. =100o (0.55), =1 GHz ⇒ 

0.278 ns delay
– Can be ~100 ns: need ⪕2.5 

MHz for /2chan⪕1/4
● Spectral resolution >105

● Talk by Bourke
– No instrumental delay errors 

when fully commissioned 



   

● Spectral resolution for rfi excision
● or avoiding ALMA lines

● Delay error (/2)/ on 
continuum point at phase centre
● e.g. =100o (0.55), =1 GHz ⇒ 

0.278 ns delay
– Can be ~100 ns: need ⪕2.5 

MHz for /2chan⪕1/4
● Spectral resolution >105

● Usually very stable, can apply 
across sources/times

– No instrumental delay errors 
when fully commissioned 

First post-correlation issues



   

Time-variable atmospheric errors

● Want to sample at better than d/dt < /6 
● cm- phase-rate: few min Solar min; few secactive ⨀
● mm- few min short baselines (at ALMA site); 

– sub-mm-and/or km baselines: (few) sec
● ALMA Water Vapour Radiometry every (few) sec

– Model phase corrections
● Tsys amp corrections few min, eventually more rapid
● ALMA astrophysical phase ref cycles down to 20:2 sec

● Strongest time constraints will tend to be: 
● e-MERLIN wide-field imaging
● ALMA calibration

– Maybe also mosaicing



   

Imaging constraints on 
time/channel averaging

● Assume all editing and external calibration applied
● Their constraints can hereafter be ignorred
● In comissioning, keep unaveraged data just in case ...

● Typical current correlator outputs:
● ALMA 4 x ⪕2 GHz spw,  dual polarization

– TDM tint ⪕1 s, channel d 15.625 MHz
– FDM tint ⪖1 s, channel d ⪕ 0.488 MHz

● e-MERLIN 4 (eventually 16) x 128-MHz IFs
– tint 1 s, d0.25 MHz per pol. at present

● Eventually ~ infinite variety of configurations....



   

Wide-band, wide field continuum

● Frequency-dependent 
● Bandwidth amplitude smearing
● Source spectral index 

– Assume good MFS imaging at order ⪖1
● Rotation Measure synthesis (not considered here)

● Time-dependent
● Time amplitude smearing
● Phase rate
● Dynamic range

● Effective array PB = /WijDij / Wij(Strom04; Wrigley)
● e.g. 0.05/27 or 6.3 arcmin for e-MERLIN at 6 GHz



   

Bandwidth smearing

● Simplistic concept:
● Resolution B ~ /B where B is longest baseline

– within a factor ~2 depending on weighting, uv coverage
– ignor direction-dependent projection effects for non-

circular uv coverage
● Source component position  depends on /Bij

– i.e. scaling in uv plane
● The flux will be smeared when  changes enough for 

to change by an appreciable fraction of B

● NRAO Summer School 1999 Taylor, Carilli & Perley
● (NRAO99) ⁋ 18 Bridle & Schwab
● Use their expressions to derive convenient relationships



   

VLA Bandwidth smearing
●  1.4 GHz, d 50 MHz
● Radial smearing

● Relatively easy to subtract
● Possible to reconstruct (Cornwell)?

– Could be volume saving
– Time-expensive

NVSS



   

Bandwidth Smearing

● Parameterized using  = d//B

● Apparent/real flux density R of source from pointing 
centre when channels are averaged to d

● 'Tapered Gaussian' distribution of uv plane samples
● Reasonable for ALMA ES, e-MERLIN, most EVLA

– Uniform coverage also considered by B&S but not here
● Case 1.4 Gaussian shape of d

● Suitable for few channels with e.g. Hanning smoothing
● Case 1.3 dsquare profile

● Suitable for many channels, well-behaved bandpass



   

Gaussian uv, Gaussian bandpass

●  = d//B

● R = 1/√(1 + GG
2) 

● Approximate predictions for easy use
● e-MERLIN: Limited range of ; fixed B; large span of  

– Ready reckoner:  dGG= GG (B/) x consts
● User inputs R, , ,B  

● ALMA: Wide ranges of and B; often image to PB

– Ready reckoner:  dGG= GGc (1/B ) x consts
● User inputs R, ,B

● consts converts from user units (asec, MHz etc.) to SI 

●  = d//B

● R = 1/√(1 + GG
2) 

● e-MERLIN: Limited ranges of and B; large span of  
– e-MERLIN ready reckoner: 

● ALMA: Wide ranges of of and B; often image to PB



   

Gaussian uv, Square bandpass

●  = d//B

● R = √/(2√ln2 ) x erf (2√ln2 /2)
● Approximate erf using first 3 terms of Maclaurin series

● R = √/(2√ln2 ) x 2/√ (z –  z 3/3 + z5/10) 
– where z = 2√ln2 /2

● This cancels to a quadratic equation in z2, giving
●  = 2/2√ln2 √[(10 - √(360R –  260)]/6

– real roots for R>13/18
– accurate to few % for R>0.8

● Ready reckoners for dGS as before



   

e-MERLIN bandwidth 
smearing



   

ALMA 80% 
bandwidth smearing 



   

ALMA 95% 
bandwidth smearing 



   

Spectral index

● Bandwidth averaging also limited by spectral index 
● Flux density S at frequency
● Max fractional change fS,  requiring frequency width

● d = [(1+fS)1/| –  1]
– Smearing width is independent of sign convention
– Relatively weak constraint, ignor spectral curvature

● User inputs , fS, 
● Image ALMA sidebands separately

● If spectral curvature is an issue 
● Similar considerations for RM synthesis imaging

12-16 GHz

4 GHz



   

e-MERLIN 



   

e-MERLIN bandwidth  
& =2 1% smearing

C

L



   

ALMA 



   

ALMA bw & 
=3 1% smearing 



   

Time smearing
● Crude description: sky rotates during averaging time dt 
● Reduced amplitude R = 1 –  C (/B)2 dt 2  (NRAO99 ⁋18)

● C=1.08 10-9  uniform uv coverage, 1.22 10-9  Gaussian
– dt = √[(1-R)/C]  x /B

● User inputs R, ,B

● Phase rate d/dt1 = 2(/B) /(24 x 3600) in 1 sec
● Corresponding reduction in amplitude to

– R = sinc[(d/dt1)(dt )/2] (NRAO99 ⁋13 Perley)
● = sinc{√[(1-R)/C] / (24x3600)} 
● R > R for all values of R 

● But further self-calibration required (d/dt1)dt  ⪝ /6
– Only an issue if small /B , large dt (hundreds s): unlikely 



   

MERLIN spectral time smearing
●  22 GHz, d 0.016 MHz, dt 4s
● Smearing mimics multiplicity

● Complex non-radial patterns
Q pointing centreQ pointing centre

R 15'' offseR 15'' offset

P 30'' offsetP 30'' offset

PP

RR

QQ



   

Dynamic Range

● Limitations due to phase errors NRAO99 ⁋13 
● Surmise that phase winding has similar effect

● Dynamic range limited to D = (√M)N / (d/dt1)dt 
● N antennas, M independent samples

– Is dt  the duration of an 'independent sample'?
● OK for ALMA if dt is similar to snapshot duration
● May be (much) too low for eMERLIN or ALMA on long 

baselines, for very high dynamic ranges
– If this is the case then for observations duration H hr

● M = H /dt 
– dt  = [3600H N 2 /(D x d/dt1)

2]1/3



   

e-MERLIN time smearing/ 
dynamic range limits



   

ALMA t smearing/dynamic range 



   

Other sources of error

● Acceptably aberrated FoV may be more strictly limited
● Pointing errors (seem not to be effectively correctable)
● Antenna position errors (correctable?)
● Imperfect primary beam models

● 3D sky/non-coplanar array (Cornwell et al. 2005)
● Significant if Fresnel ratio FR >  Bmax / PB2

● e-MERLIN FR ~ 4 –  80 depending on , Lovell or not
– w-projection faster than faceting

● But wasteful/excessive image size for large, sparse fields
– find the trade-off point?

● ALMA ~ 1.1 for band 1, longest baseline, otherwise <<1
– But what about far-out emission in mosaicing?



   

e-MERLIN and ALMA constraints

● Flag rfi, then imaging tightest e-MERLIN constraint
● Subtract confusing sources
● Continuum d 0.0625 MHz at L-band 

● Sufficient to image ~1o (>4xPB FWHM) at L to R 0.95 
– Would need dt 0.35 s to keep time-smearing to 0.95

● d 0.25 MHz C- & K-bands allows ~8'  (>2xPB FWHM)
– But default 1 s integration reduces this to 6'.5 

● Phase winding less strict unless high dynamic range 
● ALMA calibration may be most demanding

● Imaging phase-rates on 15 km baselines
● Wide-field mosaicing



   

Progressive averaging e-MERLIN

● Potential volume savings for restricted FoV
● Smearing <0.95 in freq. d time dt, dynamic range D 1000

– more than is sensible only at lower frequencies

Band beam (mas)  d@1'' @10'' @100'' @1000''

All 125 MHz 12.5 MHz 0.75 MHz 0.0625 MHz

sec @1'' @10'' @100'' @1000''

dt D dt D dt D dt D

L 200 1280 150 125 33 12 7 1 1

C 50 320 60 32 12 3 2 0.3 0.6

K 12 75 24 7 5 0.75 1

● Potential volume savings for restricted FoV
– 1000'' only at lower frequencies

● Smearing <0.95 in frequency interval d time dt
● Dynamic range D 1000 (probably worse for short dt)
● Default chan width 0.0625/0.25 MHz at L/C&K; tint 1s



   

Progressive averaging ALMA
● Potential volume savings for restricted FoV

● Smearing <0.95 in frequency interval d time dt
– Dynamic range up to 1000 reached in 1 hr
– 1% change for || = 3

● Default chan width 15.625 MHz in TDM

Band (GHz) beam  100 750 2000 all

d(MHz) d(MHz) d(MHz) d=3

3 (115) 540 70 15 380

6 (230) 1090 140 35 760

7 (345) 1640 210 55 1140

9 (690) 3280 430 160 2290

All dt (s) 60 8 3



   

Source Subtraction
● Why subtract outliers and average up?

● Pro: 
– Speed-up in imaging if you might have to repeat it

● Smaller input data set
● May be able to image smaller area
● May be essential for mosaicing

● Con: 
– Subtraction and splitting is time-consuming
– Subtracted sources can get 'lost'
– If channels/times have been flagged, need 

● either to reject enough data to ensure equal-sized bins
● or apply suitable weights - how?
● MFS and RM imaging artefacts if samples irregularly 

spaced –  can this be mitigated? Anna Scaife talk!



   

Progressive averaging possible

● Single fields:
● Target may extend far out, or confusion

– Time and bw constraints for line and continuum 
– Can subtract outliers to allow further averaging

● Mosaicing: effective FoV many x PB FWHM
● Parts of target will be in remote parts of beam
● Impractical to sample fast enough to avoid all smearing

– What is limit for subtracting smeared sources v. adding 
the regions together with appropriate sensitivity weight?

● Frequency-dependent/heterogenous primary beams
● Sanjay's talk –  assess sensitivity outside FWHM

– e-MERLIN with Lovell especially complicated (Wrigley+)
– ALMA combining different frequency intervals



   

Next steps
● These calculations are approximations for data averaging

● Not for deriving corrections to over-averaged data!
● Test on real data in CASA

● Investigate time consumed in SPLIT v. saved in CLEAN
● Realistic limits? (improve dynamic range understanding)

● CASA guide for manual specification of averaging
● Develop CASA task or switches in SPLIT

● Obtain frequency, typical resolution etc. from MS metadata
● User inputs FoV, smearing limit, dynamic range, 

– Sensible defaults
● Retain options to set dt &/or d averaging manually

– Spectral line and time-variable sources! 
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