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ASKAP overview

• Located at radio-quiet site approx. 300 km inland from Geraldton
• Six antennas are already on site
• Array of 36 12m antennas with phased array feeds (PAF)

http://www.atnf.csiro.au/projects/askap

ASKAP = Australian Square Kilometre Array Pathfinder



ASKAP is a wide-field of view instrument

30 beams to fill field of view

Wide field of view 
(30 square degrees)

high data rate (3 GB/s)



What needs calibration?

• Visibility-plane effects
• Complex gain per beam per antenna
• Bandpass per beam per antenna, effectively this is a complex gain per
fine-resolution frequency channel (18 kHz)
• Polarisation leakage per beam per antenna (per 1 MHz?)

• Image-plane effects - hopefully not
• Ionosphere is relatively benign at 1 GHz
• Primary beam is fixed on the sky (3-axis antenna mount)
• Pointing can be corrected on-the-fly, but should be fine as it is
• PAF stability (synthetic beams) is still the biggest unknown. Peeling is
expected to help. PAF element-based calibration is taken care of
upstream.

• Operations-specific calibration - not something we do in real time
• Antenna positions on the ground (baseline calibration)
• Global pointing model (might be done per-antenna as part of
commissioning)



Online calibration loop and forward prediction

• We keep the instrument well calibrated at all times
• New calibration solutions are fed back to the ingest pipeline (via calibration
data service) to be applied on-the-fly
• A prototype solver was written. It will be the base for the BETA pipeline (and
initially the calibration will be offline to keep the ingest pipeline simple).

General approach:



Calibration is a least-square fit

• Understanding of the instrument allows us to relate true (or model)
visibilities with the measured ones (non-linear relation on parameters)

For example (considering scalar case for simplicity):
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Solution of normal equations gives an update to parameters:

• Need multiple iterations to converge to the correct parameters
due to non-linearity
• Master-worker framework allows to distribute normal equations



Calculation of derivatives

• Calibration part of the measurement equation is known analytically
• In principle, we could calculate all derivatives required for the Least-
Square Fit in advance
• Tedious to do manually, especially if we plan to do any research of the
structure of these equations and change them from time to time
• Numerical differentiation is an option, but has its own drawbacks

• We use automatic analytical differentiation in our code
• Run-time analytical expansion of equations
• Overheads are low as the parameter-dependent part of the
measurement equation is typically rather simple
• Same idea of automatic differentiation as in casacore’s AutoDiff and
SparseDiff classes
• Our implementation (called ComplexDiff) has full support of complex
parameters (and complex conjugation in equations) and works with string
parameter names (handy in a parallel environment)



Automatic differentiation

• The main idea is to track derivatives through the equations from the
point where their calculation is trivial

For
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Automatic differentiation with ComplexDiff

ComplexDiff g(“par1”, Complex(35., -15.)); // complex parameter
ComplexDiff f(“par2”, 0.5);  // real parameter
// some equation
ComplexDiff result = g * f + Complex(0., -2.1) * f + 2 * conj(g) + 1.;
// access to value
cout << result.value() << endl;
// access to derivatives
cout << result.derivRe(“par1”) << “ “ << result.derivIm(“par1”) <<
        result.derivRe(“par2”) << endl;

String-based indices are handy if equation calculation is distributed:



Implementation details of the calibration ME

Individual effects return Mueller matrices based on the given metadata
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Performance tests

Calibration has to keep up with observations
• deliver the solution faster then the required integration time

Simulate Measurement Set Make an image

Run ccalibrator

Use as a model

Some random gains 
and leakages

Compare gains and leakages with
the simulated ones

• Simulated full ASKAP with 36 antennas
• Full Stokes observations
• 11 5-minute scans at different hour angles
• But a single 1-MHz spectral channel and 1 beam
• Similar data volume to the amount of data a single
worker will see with the actual telescope in 5 min.

On our Dell R710 it
took 666 seconds to
run ccalibrator!

This is too long even taking into
account the initial setup which
can be factored out in the final
system.



Pre-averaging calibration

• Aim to achieve calibration with just one iteration over data
Use the fact that the equation is linear on model visibilities. Considering
the scalar case again for simplicity:
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Now divide both sides by the model visibilities

This division stops fast variations in both time and frequency (makes the
model equivalent to a point source in the phase centre). We can now
average in time and frequency

• It becomes less trivial in the non-scalar case (full polarisation)!
• We also want to retain our general calibration framework
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This is not a new approach, e.g. casa uses something similar



Different approach to pre-averaging
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Normal matrix element:
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Form Normal Equations

The only assumption is
the structure the of the
measurement equation
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Data vector element: Accumulated on the 1st iteration



In the full Stokes case                                     is replaced by:

Vector case (full Stokes)
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Oleg’s tensor-based measurement equation formalism could probably help to
deal with these extra dimensions in a neat way, but it is clear that the main
implication is that one needs to buffer all cross-polarisation products now:

4 real and 6 complex numbers per group with the
same parameter dependence (i.e. per baseline)
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obs 16 complex numbers per group
In total, about 0.4 Mb per worker

Physical interpretation: multiplication by the conjugate of the model
visibilities stops fast variations.



What we’ve got at the end

Buffering happens behind the scene, move to pre-summing is simple

Same performance test as before was done in 23 seconds as opposed to
666 seconds for the brute force least-square fit (and only 11 seconds if
polarisation leakages are not solved for)



Additional issues

• The suggested pre-summing approach is quite general
• Works for any effect which can be represented by Mueller matrix
as long as the equations can be grouped as expected

• Polarisation calibration of a classical Alt-Az telescope is one of the
cases where the grouping per baseline is not enough

• Parallactic angle rotation couples parameters in a different way at
different hour angles
• The solution is to buffer polarisation products separately for each
such scan
• We have this functionality in our code because we may end up
using the sky rotation control for the ASKAP antennas to assist
polarisation calibration

• The computation of data vector often involves subtraction of two large
numbers (two sums)

• Numerical precision issues have to be watched
• No problems found so far



Summary

• Pre-summing approach to build normal equations is very effective
• Factor of 20 increase in performance on top of brute force least-square
fit approach
• No approximations made
• It is the structure of equations which allows us to do it this way

• ASKAP calibration code includes
• Autodifferentiation supporting full complex case and distributed
calculations of equations
• Reuse of the master-worker parallel framework designed for imaging
• Neat way to specify measurement equation



Contact Us
Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au  Web: www.csiro.au
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