The PDF version of these slides might not make much sense without the accompanying narrative.

Please email me with any questions: <u>ianh@astro.ox.ac.uk</u>

A self-imposed rule (as much as it pains me...)

Context: sub-mm galaxies and QSOs in the William Herschel Deep Field

WHT U B R I Z imaging (B < 27.9 mag)
UKIRT H K imaging
HST ACS High-resolution I band imaging

Chandra LABOCA EVLA X-ray 10^{-15} erg s⁻¹ cm⁻² (70 ks) 870 μ m sub-mm survey (21 h) Deep 8.4 GHz radio (35 h)

EVLA observations of the WHDF

• 35 hours with EVLA D-configuration

Post-flagging, post-averaging gain calibration performed with CASA flux scale \rightarrow bandpass \rightarrow complex gain

Two features of this target field that an estate agent would describe as 'quirky'

The phase calibrator

4C +00.02 0.6 Jy

The point-spread function

Wide-field dirty image of target

Deconvolved image

Subtract MODEL_DATA column and image residuals

The EVLA primary beam

Intrinsic or apparent transients? Either way your continuum map is a mess

MeqTrees KAT-7 simulation

Deconvolved image, Briggs weighting

OeRC SKA AA simulation (Dulwich, Mort, Salvini)

Deconvolved image, natural weighting

Intrinsic or apparent transients? Either way your continuum map is a mess

MeqTrees KAT-7 simulation

Apparent brightness drifts by about $\pm 15\%$

 48×30 -minute snapshot dirty images

 48×5 -minute snapshot dirty images

OeRC SKA AA simulation (Dulwich, Mort, Salvini)

Tuesday, 26 July 2011

Direction-dependent calibration to the rescue

Peeling

← → C

× (+)

🕲 www.aips.nrao.edu/cgi-bin/ZXHLP2.PL?PEELR

AIPS HELP file for PEELR in 31DEC11

0 🔧

4

☆

As of Mon Jul 25 5:08:21 2011

PEELR: RUN PEELR for proc to calibrate interfering sources

INPUTS

INNAME			Input UV file name (name)
INCLASS			Input UV file name (class)
INSEQ	0.0	9999.0	Input UV file name (seq. #)
INDISK	0.0	9.0	Input UV file disk unit #
IN2NAME			Input image name (name)
IN2CLASS			Input image name (class)
IN2SEQ	0.0	9999.0	Input image name (seq. #)
IN2DISK	0.0	9.0	Input image disk unit #
OUTNAME			Output UV file name (name)
OUTCLASS			Output UV file name (class)
OUTSEQ	-1.0	9999.0	Output UV file name (seq. #)
OUTDISK	0.0	9.0	Output UV file disk unit #.
NFIELD	1.0	4096.0	Number facets in IN2NAME
NGAUSS	1.0	10.0	Number resolutions in IN2NAME
PPARM	0.0		List of <= 100 facets to peel
BCHAN	0.0	16384.0	Lowest channel number 0=>all
ECHAN	0.0	16384.0	Highest channel number
SOLINT			CALIB solution interval (min)
SOLTYPE			Soln type,' ','L1','GCON',
			'R', 'L1R', 'GCOR'
SOLMODE			'P' phase only, else 'A&P'
WEIGHTIT	0.0	3.0	Modify data weights function
APARM			General CALIB parameters
			1=min. no. antennas
			2 > 0 => data divided
			3 > 0 => avg. RR,LL
			- · · · · · · · · · · · · · · · · · · ·

C 🕓 casa.			
	nrao.edu/docs/taskref	f/peel-task.html	☆ (O)
National Rad Astronomy (dio Observatory		Search NRAO
RAO Home > CASA	> TaskRef		Monday, July 25, 201 Search
next] [prev] [prev-tail]	[<u>tail]</u> [up]		
.1.57 peel			
equires:			
nopsis Do direction o	dependent selfcal(s) an	nd optionally remove annoying sources. Description	
rguments			
	Inputs]
	vis	Name of the input visibility set. allowed: string	
	dirs	List of directions to peel. allowed: any	
	remove	Default: variant "" Subtract the selfcalibrated source(s) from the data.	
		allowed: bool	
		Default: True	
	calmode	Default: True Type of selfcal to do. (p: Phase only, a: Ampl only. ap: both	
	calmode	Default: True Type of selfcal to do. (p: Phase only, a: Ampl only. ap: both allowed: string Default: p	

$\mathsf{D}_{pq}^{(1)} = \mathsf{D}_{pq} - \tilde{\mathbf{G}}_p \mathsf{X}_{s_0 pq} \tilde{\mathbf{G}}_q^H$

Smirnov, A&A, 572, 107, 2011 following Noordam, SPIE, 5489, 817, 2004

Tuesday, 26 July 2011

Solve for differential gains

 $\mathbf{V}_{pq} = \mathbf{G}_{p} \left(\sum_{s} \Delta \mathbf{E}_{sp} \mathbf{X}_{spq} \Delta \mathbf{E}_{sq}^{H} \right) \mathbf{G}_{q}^{H}$

Dirty image

Best 'traditional-cal' image

Solve for differential gains with MeqTrees, subtract model and image residuals

Solve for differential gains with MeqTrees, subtract model and image residuals

Smirnov, A&A, 572, 107, 2011 Noordam & Smirnov, ApJ, 524, 61, 2011

Solve for differential gains with MeqTrees, subtract model and image residuals

dE solutions per antenna

AS1008_sb1166809_1.55311.49789672454.ms.SPLIT.WHDF1.ms

Solving for the 'variable' sources in our simulations

	Model TDL Compile-time Options	
	MS selection	2
File Image Plot Select View Tools Help	MS:	KAT7.MS
name BA Dec r type	Interferometers to use:	🗊 all
22_J1930M72_19h05m26.21s73*50'02.40"Gau	Correlations to use:	2x2, diagonal terms only
43 J1930M76 19h15m54.44s -74°39'36.90" 65.4' Gau	Start Purr on this MS	
52_J1930M76_19h19m50.42s74°35'58.50"_74.6'Gau	Processing options	0
12 J1845M76 19h00m20.34s -74°10'48.00" 29.6' Gau 64 J1930M76 19h31m55 52s -74°34'17.40" 116.8' Gau	Read additional uv-model visibilities from MS	0
13_1845M76 19h01m04.48s -74°29'25.10" 43.2' Gau	 Calibrate (fit corrupted model to data) 	U
3C 1104EN7C 10511-44.62- 74010133.001 30.41 C	Calibrate on:	💓 complex visibilities
2.3	using interferometers:	💓 all
	Output visibilities:	corrected residuals
R Ino_flare.fits	+ Flag output visibilities	
	+ Measurement Equation options	
	- Sky model	
Sa / /	- Vise 'TiggerSkyModel' module	
	Tigger LSM file:	sumssism.ism.html
	Source subset:	TRANSIENT
- / / /	+ Make solvable source parameters	
	+ Use 'Calico.OMS.central point source' module	()
•	+ Use 'Siamese.OMS.fitsimage sky' module	
1°30' 1° 30'	+ Use 'Siamese.OMS.gridded sky' module	
	+ Export sky model as kvis annotations	
	+ Use E Jones (primary beam)	①
	– 🖌 Use dE Jones (differential gains)	
	- 🗸 Use 'DiagRealImag' module	
	Matrix type:	complex
	Initial value, diagonal:	1
	Initial value, off-diagonal:	0
	Solve for each source independently	0
· · · · · · · · · · · · · · · · · · ·	+ Use 'FullRealImag' module	••
and the second	+ Use 'DiagAmplPhase' module	▼
	< (III	4
	Compile Loady	Save 🛛 😣 Cancel

Solving for the 'variable' sources in our simulations

OeRC SKA AA simulation (Dulwich, Mort, Salvini)

40

60

20

10

30

MeqTrees KAT-7 simulation

16 Central 1 Jy source flares to 3 Jy for about an hour 12 4 hour 24 hour track / 1.6 GHz / 2 deg field 10 43 (1) 4

Automating everything

Flagging full spectral resolution data

SKA_EGNFIGS	1612
SKA_F Progress -/Data/EVI Progress of operation draw_items: Help 99% INFO CB INFO CB Drawing item "Amp vs. Time ". Background Pause Cancel	57:25.0 57:25.8 57:25.8 Stop
<pre>r/interactive flagger for visibility data. *AS1008_sb1094913_1.55326.477696724534.REMERGED.ms' # input visibility data ***********************************</pre>	

Automatic flagging with rficonsole

Automated calibration scheme / software inventory: 7 MS test

The importance of diagnostic data products: UFOs over New Mexico?

AS1008_sb1166809_1.55283.82364069445.ms.SPLIT.WHDF1.ms ddid 0 CORRECTED_DATA mean Stokes I

Automatically generate PSF images

Automatically generate dirty maps

Map from 6 MS \times 2 SPW, 13 μ Jy RMS

Less is more: 5 MS \times 2 SPW, 6 μ Jy RMS

MERLIN observations of NGC3351

MERLIN observations of NGC3351

Wide-band, wide-field e-MERLIN simulation with a toy primary beam model

