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Data Model 

• Commonly used signal processing model 
𝐱 𝑡 = 𝐀�𝐬� 𝑡 + 𝐧(𝑡) 

• 𝐱 is a 𝑝 × 1 vector of measurements  
• 𝐀� is a 𝑝 × 𝑚 matrix containing the array response 
• 𝐬� is 𝑚 × 1 vector of sources 
• 𝐧 is a 𝑝 × 1 vector of noises 
• Sampling the data at 𝑡 = 𝑘𝑇𝑠 where 𝑇𝑠 is the sampling period, 

gives us 
𝐱 𝑘 = 𝐀�𝐬� 𝑘 + 𝐧 𝑘  

• The covariance matrix is given by 
𝚺 = 𝐀�𝚺𝐬�𝐀�𝐻 + 𝚺𝐧 
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Factor Analysis 

• The case that 𝚺𝑛 = 𝜎2𝐈 is well studied in literature  
• Noise is spatially uncorrelated 

𝚺𝐧 = 𝐃 
 where 𝐃 is a diagonal matrix 
• Given any invertible matrix 𝐙 and any unitary matrix 𝐐  
 𝐱 = 𝐀�𝐙𝐐�

𝐀
𝐐𝐻𝐙−1𝐬�

𝐬
+ 𝐧 

 
 𝐙 could be chosen in such a way that we can rewrite 
 

𝚺 = 𝐀𝐀𝐻 + 𝐃 
 

•  𝐐 is chosen in such a way that 𝐀𝐻𝐃−𝟏𝐀 becomes a real 
diagonal matrix 
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Estimation (1) 

• Given N samples from x  the sample covariance matrix is 
given by 

 
 

𝐒 =
1
𝑁
� 𝐱 𝑘 𝐱𝐻[𝑘]
𝑁−1

𝑘=0

 

 
• The model parameters in  

𝚺 = 𝐀𝐀𝐻 + 𝐃 
 are estimated from 𝐒 
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Various Algorithms for Estimation 

• Various methods exist to find the model parameters 
• Maximum likelihood estimation 

• Cost function is the likelihood 𝑝(𝐱;𝐀,𝐃, 𝐒) 
• Scoring method 
• Cost function Kullback–Leibler divergence 
• KLD Algorithm 

• Least Squares 
• Cost function is the mean square error 𝐒 − 𝐀�𝐀�𝐻 + 𝐃� 𝐹

2
 

• Alternating least squares 
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Maximum Likelihood Estimator 

• Proper complex Gaussian distribution for noise and signals 
• The likelihood that we want to maximize is 
 

𝑝 𝐱;𝐀,𝐃, 𝐒 =
1

𝜋𝑝𝑁 𝚺 𝑁 e−𝑁tr(𝚺−1𝐒) 

 
• By setting the Fisher score equal to zero the model 

parameters could be estimated 
 

𝐓𝐀 = −𝑁𝚺−1𝐀 + 𝑁𝚺−1𝐒𝚺−1𝐀 
𝐓𝐃 = 𝑁diag(−𝚺−1 + 𝚺−1𝐒𝚺−1) 

 
• Too complex to solve analytically  
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Scoring Method 

• Scoring Method is one way to find the MLE numerically 
• It is an iterative method 
• Let 

𝛉 = 𝐚1𝑇 , … , 𝐚𝑚𝑇 ,𝐝𝑇 𝑇 
• 𝐚𝑖 is the 𝑖th column of 𝐀 and 𝐝 contains diagonal elements of 
𝐃 

𝛉�𝑖+1 = 𝛉�𝑖 + 𝜇𝐅† 𝛉 𝐭𝛉 𝛉 �
𝛉=𝛉�𝒊

 
 

 where 𝐭𝛉 𝛉 = vect 𝐓𝐀 𝑇 , vect 𝐓𝐃 𝑇 𝑇 and 𝐅 is the 
 Fisher information matrix 
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Fisher Information Matrix 
 

• If the estimated parameters are partitioned as 
𝛉 = 𝐚1𝑇 , … , 𝐚𝑚𝑇 ,𝐝𝑇 𝑇 then the Fisher information can be 
written as 
 
 

 𝐅 =

𝐅𝐚1𝐚1 … 𝐅𝐚1𝐚𝑚 𝐅𝐚1𝐝
⋮ ⋱ ⋮ ⋮

𝐅𝐚𝑚𝐚1 … 𝐅𝐚𝑚𝐚𝑚 𝐅𝐚𝑚𝐝
𝐅𝐝𝐚1 … 𝐅𝐝𝐚𝑚 𝐅𝐝𝐝

 

 
• For the FA model these sub-matrices are: 

 𝐅𝐚𝑘𝐚𝑛
∗ = 𝑁𝐚𝑛𝐻𝚺−1𝐚𝑘𝚺−1 

𝐅𝐚𝑘𝐝
∗ = 𝑁𝚺−1diag(𝚺−1𝐚𝑘) 
𝐅𝐝𝐝 = 𝑁(𝚺−1⨀𝚺−𝑇) 
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Problems with Scoring Method 

• Convergence is not guaranteed 
• Sensitive to initial guess 

𝐃0 = 𝐝𝐝𝐚𝐝 𝐒−1 −1 
• Even if it converges, it might converge to a local maximum 
• Size of the Fisher information could become very large 
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Kullback–Leibler divergence 

• Tries to minimize the “distance” between two families of 
distributions 

• The final iteration steps are 
 

𝐀�𝑖+1 = 𝐒𝚺�𝑖−1𝐀�𝑖𝚽𝑖
−1 

𝐃�𝑖+1 = diag(𝐒 − 𝐀�𝑖+1𝐀�𝑖𝐻𝚺�𝑖−1𝐒) 
𝚽𝑖 = 𝐈 − 𝐀�𝑖𝐻𝚺�𝑖−1𝐀�𝑖 + 𝐀�𝑖𝚺�𝑖−1𝐒𝚺�𝑖−1𝐀�𝑖 

 
• Shares the same convergence properties of the EM algorithm 
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Alternating Least Squares 

• Minimize the MSE between 𝐒 and 𝚺� = 𝐀�𝐀�𝐻 + 𝐃�  
• Two stage minimization 

• In the first stage 𝐀� is held constant and 𝐃�  is found 
𝐃�𝑖+1 = diag(𝐒 − 𝐀�𝑖𝐀�𝑖𝐻) 

• In stage two the 𝐃�  is held constant and 𝐀� is calculated 
 

𝐀�𝑖+1 = 𝐔𝑚𝐋𝑚
1
2  

 where 𝐋𝑚 is a diagonal matrix containing 𝑚 largest 
eigenvalues of 𝐒 − 𝐃�𝑖+1 and 𝐔𝑚 is a matrix of size p × 𝑚 
containing the corresponding eigenvectors 
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Cramér–Rao Bound 

• For an unbiased estimator the CRB is the lowest bound on 
the covariance matrix, 𝐂, of the estimated parameters, 𝛉 

     
     𝐂 𝛉 ≥ 𝐅−1 
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Validation/Detection 

• After the parameters have been calculated the question 
remains if the FA model  “explains” the data well enough 

• General likelihood ratio test (GLRT) 
• Two hypotheses: 

• 𝐻1 is the case that no model is imposed on the data 
• 𝐻0 is the case that the FA model “explains” the data 

 
𝑙 =

log 𝐿1
log 𝐿0

< 𝛾 
 

 𝐿𝑖is the maximum value of the likelihood under 𝐻𝑖 
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Test Statistics 

• Under 𝐻0 the GLRT, 2𝑙 has a central 𝜒𝑠2 distribution 
𝑠 = 𝑝 − 𝑚 2 − 𝑝 > 0 

• Threshold could be found based on this distribution 
• Simulation 

• 𝑝 = 5 
• 𝑚 = 2 
• 𝑠 = 4 
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Constant False Alarm Detector 

• Especial case is when 𝑚� = 0 then the GLRT becomes a 
constant false alarm detector 
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Simulations - DOA 

• Direction of arrival 
(DOA) using 
ESPRIT 

• 2 sources at -20 
and 30 from 
broadside 
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Simulations – Spatial Filtering 

• Celestial sources are 
very weak 

• Spatial filtering on 
short-term correlations 
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Conclusions 

• When the noise covariance is unknown FA can be used to 
model the data 

• To make the model applicable for radio-astronomy it had to 
be extended to complex numbers 

• Three different algorithms have been proposed for estimating 
the model and  

• The validation of the model is shown with the help of a GLRT 
• A constant false alarm detector and its statistics is shown 
• With the help of simulations we showed that the algorithm 

has practical potential 
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Questions? 
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