

CALIM 2011

Range of technologies: AA, PAF, Dish

- ASKAP (Tim) \rightarrow 6 antennas installed, 2nd PAF on its way
- LOFAR (Ronald) → Science users
- MeerKAT (Ludwig) → KAT-7 commissioning started
- MWA (Daniel) → Imaging & pulsar detection commissioning results
- EVLA (Sanjay) → Science users

Range of technologies: AA, PAF, Dish

- ASKAP (Tim) \rightarrow 6 antennas installed, 2nd PAF on its way
- LOFAR (Ronald) \rightarrow Science users
- MeerKAT (Ludwig) \rightarrow KAT-7 commissioning started
- MWA (Daniel) → Imaging & pulsar detection commissioning results
- EVLA (Sanjay) → Science users

Range of technologies: AA, PAF, Dish

- ASKAP (Tim) \rightarrow 6 antennas installed, 2nd PAF on its way
- LOFAR (Ronald) \rightarrow Science users
- MeerKAT (Ludwig) \rightarrow KAT-7 commissioning started
- MWA (Daniel) \rightarrow Imaging & pulsar detection commissioning results
- EVLA (Sanjay) → Science users

- This CALIM has taken us from: Simulation \rightarrow Implementation \rightarrow Application
- To the point that implementations are now evolving iteratively following data results (Urvashi/George)
- Combination of simulation and application (lan)

- This CALIM has taken us from: Simulation \rightarrow Implementation \rightarrow Application
- To the point that implementations are now evolving iteratively following data results (Urvashi/George)
- Combination of simulation and application (lan)

- This CALIM has taken us from: Simulation → Implementation → Application
- To the point that implementations are now evolving iteratively following data results (Urvashi/George)
- Combination of simulation and application (lan)

Different software packages seem to be converging on common methods

 \rightarrow Pre-averaging calibration

- Utilizing experience from other projects (direct result of CALIM?) $\longrightarrow \mathsf{JAWS}$
- Multiple implementations of common algorithms \rightarrow redundancy of testing

 Different software packages seem to be converging on common methods

\rightarrow Pre-averaging calibration

- Utilizing experience from other projects (direct result of CALIM?) →JAWS
- Multiple implementations of common algorithms \rightarrow redundancy of testing

 Different software packages seem to be converging on common methods

\rightarrow Pre-averaging calibration

- Utilizing experience from other projects (direct result of CALIM?) →JAWS
- $\bullet\,$ Multiple implementations of common algorithms $\rightarrow\,$ redundancy of testing

- Algorithms are evolving quickly
 Major change every
- Hardware is also evolving

 \rightarrow Major change every two years

How will this be dealt with during science operations?

- Algorithms are evolving quickly →Major change every year
- Hardware is also evolving →Major change every two years
- How will this be dealt with during science operations?

- Algorithms are evolving quickly →Major change every year
- Hardware is also evolving →Major change every two years
- How will this be dealt with during science operations?

- Hybrid CPU/GPU processing (e.g. MWA)
- GPU processing for LOFAR (Panos/Vamis)
- OpenCL vs. CUDA (John)
- Convergence of GPU and CPU programming

- Introducing 3GC to current data: TV-DDE
- The more advanced our calibration methods become the more issues we will discover
- Still challenges in the calibration of existing telescopes such as Arecibo and WSRT (Sam/Oleg)

- Looking to the future
- How do we scale to SKA-lo size AA? (Christophe)
- Is it possible to sparsely represent the beams when taking into account issues such as mutual coupling?
- Are non-ideal solutions to PAF calibration sufficient? (Stefan)

 \rightarrow experiment results better than model

- Looking to the future
- How do we scale to SKA-lo size AA? (Christophe)
- Is it possible to sparsely represent the beams when taking into account issues such as mutual coupling?
- Are non-ideal solutions to PAF calibration sufficient? (Stefan)
 → experiment results better than model

- Even if the hardware can be parameterized can the computing scale?
- Scaling of ASKAP central processing is better than target (Tim)
- Reduced performance increases (Chris) → possible heterogeneous solutions

Power consumption may be the limiting factor

- Even if the hardware can be parameterized can the computing scale?
- Scaling of ASKAP central processing is better than target (Tim)

Power consumption may be the limiting factor

- Even if the hardware can be parameterized can the computing scale?
- Scaling of ASKAP central processing is better than target (Tim)

Power consumption may be the limiting factor

- Gridding is a bottle-neck
- Fast gridding methods on GPUs (John)
- Snapshot imaging is also looking like a good alternative to standard w-projection (Daniel, Tim)

 \rightarrow long baselines still problematic

Scaling to SKA long baselines is prohibitive

- Gridding is a bottle-neck
- Fast gridding methods on GPUs (John)
- Snapshot imaging is also looking like a good alternative to standard w-projection (Daniel, Tim) → long baselines still problematic

Scaling to SKA long baselines is prohibitive

- Gridding is a bottle-neck
- Fast gridding methods on GPUs (John)
- Snapshot imaging is also looking like a good alternative to standard w-projection (Daniel, Tim) → long baselines still problematic

Scaling to SKA long baselines is prohibitive

We should be aware of our fundamental limits (Tobia)
 "Calibratability is the degree to which the gains are invertible"

CALIM 2011

- Unknowns vs. Constraints
- Still new methods emerging to increase those constraints (Ahmad)

Share information and insight

Annual meetings

Forge collaborations

Demonstrated by "active and healthy" interactions

Enhance, re-use and common interface

The first of these is certainly true. A common interface has not appeared, but a common terminology is evident. Greater degree of familiarity with cross-project software/hardware.

Improve rate of progress

- Share information and insight Annual meetings
- Forge collaborations

Demonstrated by "active and healthy" interactions

Enhance, re-use and common interface

The first of these is certainly true. A common interface has not appeared, but a common terminology is evident. Greater degree of familiarity with cross-project software/hardware.

Improve rate of progress

• Share information and insight

Annual meetings

• Forge collaborations Demonstrated by "active and healthy" interactions

• Enhance, re-use and common interface

The first of these is certainly true. A common interface has not appeared, but a common terminology is evident. Greater degree of familiarity with cross-project software/hardware.

Improve rate of progress

• Share information and insight

Annual meetings

Forge collaborations

Demonstrated by "active and healthy" interactions

Enhance, re-use and common interface

The first of these is certainly true. A common interface has not appeared, but a common terminology is evident. Greater degree of familiarity with cross-project software/hardware.

Improve rate of progress

• Share information and insight

Annual meetings

Forge collaborations

Demonstrated by "active and healthy" interactions

Enhance, re-use and common interface

The first of these is certainly true. A common interface has not appeared, but a common terminology is evident. Greater degree of familiarity with cross-project software/hardware.

Improve rate of progress