GALFACTS

a large-area spectro-polarimetric survey on Arecibo

Samuel George University of Cambridge

SKA CALIM 2011

sgeorge@mrao.cam.ac.uk

28/07/2011

Galactic ALFA Continuum Transit Survey

Taylor & Salter 2011, arxiv.org:1008.4944

www.ras.ucalgary.ca/GALFACTS

Measuring the Galactic magnetic field and its role in the Galaxy Image the diffuse polarization in the Galaxy & effects of the Faraday Screen Polarization properties of the extragalactic source and evolution of magnetism Scientific pathfinder to SKA Cosmic Magnetism Key Science

Background source RMs trace ISM

Stil, Taylor & Sunstrum (2011) ApJ, 726, 4

Observations

GALFACTS

Declination range -0.8-37.8 degrees; 32% sky

8000 channels/300 MHz

3.5' beam; centre 1375MHz; 1ms time sampling

Total observation time ~ 1600 hours.

1 sigma Stokes I (all band) 90 microJy

8 runs of 29 day x 6.25 hours (4 North of zenith, 4 South of zenith)

Observations

GALFACTS

Declination range -0.8-37.8 degrees; 32% sky

RA

Scan rate = 1.53 degrees/minute Track separation = 1.83'

GALFACTS

~460MB/s

TB per run)

days.

Data Challenges

Andrecut, Guram, George, Taylor, ADASS 2011

ALFA spectrometer raw data External Drives Tape P \sim Г ~ 3 Petabytes for full project Arecibo To Calgary **CALMAIN** 9.9 TB/day reduced to 800 GB/day pply noise cal correct for pDev oupu Detect Convert time and freq after time/freq decimation at Arecibo Quick data streams and format complex gain FFT, cal-on, Look remove of signal chain. to spec cal-off RFI Disk Copy Convert to Stokes Data is compressed into 2 streams: MAPMAIN basket weave remove beam apply beam remove ZA 140TB total frequency averaged all beams centre poln centre Tsys leakage and gain corrrection variation • 40TB total time averaged, 0.2s (5 arid to per beam per per channel per beam **Stokes** Cube channel Polarisation Clean multi-beam Stokes I Position How do you transport 200TB of clean leakage in Angle Stokes I Q, U, V Correction data, 25TB at a time, from Puerto **Rico to Calgary? Science Data Products** Final I,Q,U,V Add total powe DRAO 25TB at 1MB/s would take 303 and low-spatial 26-m Image Cubes frequency Survey information **Automated** Source Detection Compact RM Source Map Catalogue

A2186.igalfa_d beam0 WAPPS Data Quality Heuristics

🗴 🕨 🐻 👼 🎃 🖬

Calibration

- High flux density (S > 500mJy)
- Small angular size (unresolved with NVSS)
- Isolated (6' from nearest NVSS source)
- Cover varying declinations

RA	DEC	I_{int}	I_{interr}	P_{int}	P_{interr}	I_{peak}	P_{peak}	% Polar.	Pol. angle
		mJy	mJy	mJy	mJy	mJy/beam	mJy/beam		deg
$02 \ 06 \ 56.65$	$+33 \ 01 \ 27.7$	808.0	24.2	0.38	0.42	791.4	0.48	0.40	81.7
$02\ 17\ 01.84$	$+28 \ 04 \ 58.2$	1023.5	35.0	11.31	0.50	896.4	9.89	1.10	88.6
$02\ 26\ 10.34$	$+34 \ 21 \ 30.4$	2894.4	86.8	7.39	0.44	2825.5	7.05	0.25	62.8
$02 \ 38 \ 12.44$	$+27 \ 25 \ 27.1$	636.9	19.1	6.63	0.43	624.4	6.39	1.04	11.4
$02 \ 50 \ 56.59$	$+21 \ 21 \ 20.0$	819.4	24.6	0.90	0.41	805.5	0.91	0.11	77.9
$03 \ 11 \ 35.17$	+30 43 20.9	965.6	29.0	4.68	0.42	955.9	4.56	0.48	52.6
$03 \ 30 \ 34.79$	$+36 \ 39 \ 41.2$	579.1	17.4	0.70	0.48	564.7	0.74	0.12	-79.2
$03 \ 40 \ 08.54$	$+32 \ 09 \ 01.3$	1611.6	50.5	34.31	1.29	935.7	19.59	2.12	-71.1
$03 \ 52 \ 33.43$	$+22 \ 20 \ 20.1$	576.6	17.3	18.09	0.43	558.8	17.00	3.14	35.2

Calibration

- For each source/beam and channel fit a Gaussian to the source embarrassingly parallel
- There regions used: within beam, 1st side-lobe and some background region
- Background NVSS sources removed
- Return parameters of source

Stokes I image of a typical calibration source. Shown are the regions used for extraction.

Calibration Output

Example of diagnostic plots produced.

Typical of the run 1 MOCK observations and are for S0238+274 (PI =1%) .

The polarization pattern seen in the U/I vs Q/I plot is due to leakage

Use S0226+343 as a reference source (small P in NVSS) for leakage – remove pattern

For V perform fit of the V vs I data to derive the leakage

Red cross corresponds to the polarization value determined from the NVSS (PI NVSS = **3.14%**) Mean distribution over all beams (after cal): PI = **2.41**

red curve U/I blue curve is Q/I

Un-polarized NVSS Sources

19 unpolarized Sources in the NVSS that cover range that have:

Stokes I > 200mJy P (bias cor) < 0.3mJy

Median Π = **4.46%**

Simple leakage correction not good enough

RFI rejection

Frequency Domain

- Since the goal is to detect channels with large power values, comparing to their neighbors, an obvious strategy is to use first order differences (or equivalently the first derivative) in the frequency domain.
- At each time t the data is transformed as following:

$$\delta_{n,t} = s_{n+1,t} - s_{n,t}, \quad n = 0, 2, ..., N - 2.$$

- The detection method is based on a Gaussian model for the amplitude of the new variable δ_{n,t}.
- In such a model, one establishes a threshold to distinguish the RFI-contaminated state from the RFI-free state, and the data exceeding some threshold is rejected.
- The threshold is calculated using an adaptive method.
- We assume that f_{n,t} is a binary rejection flag, such that f_{n,t} = TRUE if the data in channel n at time t is bad (RFI-contaminated), and respectively f_{n,t} = FALSE if the data is good (RFI-free).

RFI rejection

Time Domain

The first method uses the standard deviation of the difference signal in frequency domain:

$$\sigma_t = \sqrt{\frac{1}{N-2} \sum_{n=0}^{N-2} (\delta_{n,t} - \mu_t)^2}, \quad t = 0, 1, ..., T - 1.$$

The second method works with the band average signal:

$$\mu_t = \frac{1}{N} \sum_{n=0}^{N-1} s_{n,t}, \quad t = 0, 1, ..., T - 1.$$

- We use the second order differences (or the second derivative), instead of the first order differences.
- As for the frequency domain, the method assumes a Gaussian model for the new difference variables, and the data exceeding some threshold is rejected.
- We assume that g_t is a binary rejection flag, such that g_t = TRUE if the data at time t is bad (RFI contaminated), and respectively g_t = FALSE if the data is good.

Gain Cal

$$A_{I}(\nu) = A_{xx} + A_{yy} = (G_{x}(\nu)^{2} + G_{y}(\nu)^{2})T_{cal}$$

$$A_{Q}(\nu) = A_{xx} - A_{yy} = (G_{x}(\nu)^{2} - G_{y}(\nu)^{2})T_{cal}$$

$$A_{U}(\nu) = A_{xy} + A_{yx} = G_{x}(\nu)G_{y}(\nu)2T_{cal}\cos\phi(\nu)$$

$$A_{V}(\nu) = i(A_{xy} - A_{yx}) = G_{x}(\nu)G_{y}(\nu)2T_{cal}\sin\phi(\nu)$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0$$

$$\begin{bmatrix} \mathbf{I}' & \mathbf{Q}' & \mathbf{U}' & \mathbf{V}' \end{bmatrix} \begin{bmatrix} \frac{(g_x^2 + g_y^2)}{2} & \frac{(g_x^2 - g_y^2)}{2} & 0 & 0\\ \frac{(g_x^2 - g_y^2)}{2} & \frac{(g_x^2 + g_y^2)}{2} & 0 & 0\\ 0 & 0 & 2g_x g_y \cos \phi & -2g_x g_y \sin \phi\\ 0 & 0 & 2g_x g_y \sin \phi & 2g_x g_y \cos \phi \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{Q} & \mathbf{U} & \mathbf{V} \end{bmatrix}$$

calibrated cal signal

raw cal signal

channel number

Beam Gain Correction

Use (completely sampled in each beam) calibrator observations

Normalize all the beam responses with respect to the central beam from individual beam maps of calibrator source

Use these values to normalize the main GALFACTS data

Declination Dependent Background Removal

System temperature increases with declination (spillover effect)
Bin per day per beam data into small declination bins
Reject on source points from the bins
Fit a polynomial to the binned data and subtract the fit from the original data

Basketweaving

Basic assumption: observation of same point on the sky should give same value

• Find the crossing points between various tracks and fit the differences at these points with a progressively increasing polynomial

- Subtract this polynomial (Chebyshev) times the loop gain from the original data. Iterate over the data until improvement become too small
- Change the polynomial order by one and repeat all the steps

Effelsberg Survey Comparison

/Users/russ/galfacts/data/run1/RUN1→BONN1420.fits

GALFACT→FIELD1 Stokes I

Rotation Measure Loop in N1

D Field Cygnus Loop

Automated Source Finding – compare with NVSS

mean position offset :

 $\Delta \alpha = 8.63'' \pm 0.01, \ \Delta \delta = -4.44'' \pm 0.01$

Gradient of 9.5231 K/J for sources with NVSS flux > 150 mJy

Automated RMs

Sources are found in Stokes I image

Instead of making RM cube of whole dataset (computational expensive) – make RMs of detected sources

Highly parallel – bash script that keeps track of jobs submitted and what next (uses desktops aswell as cluster)

Currently dominated by leakage terms on source

GALFACTS Project Portal

CYBERSKA

A Cyberinfrastructure platform to meet the needs of data intensive radio astronomy on route to the SKA

ome Tools About		Remember me	Forgot password? Register	
COPS MN1 moanin Caardinates + Grid + Sea	To + Misc + Region tools + Colormage Histogram 513441,15 000 5331,16 52 500 231,52 20 000 3 5 5 5 5 5 5 5 5 5 5 5 5 5	97.2807.500 329.03.45.000 327.38.22.500	Hele -	
Curser: 1024 . 392	000000000000000000000000000000000000	240.000 339.2697.500 129101-45.000	54 50 31 200	2
Curser: 1004 , 382 Value: 9:121980 1 MULTI-I	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	20000 2002007 500 32903.45.000 VIEWER		