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Galactic & Extragalactic

MWA

Testori et al. (2001, 2004) / Wooleben et al. (2005) 

Solar, Heleospherical & Ionospheric

 SOHO/EIT

Transients 

Chatterjee & Murphy
(adapted from Cordes et al. 2003)

EoR via redshifted HI

radiation
gas-kinetic

Pritchard & Loeb 2008

Wide-field radio 
interferometer 

covering 80-300 MHz
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The MWA Consortium

• MIT Haystack Obs.
• MIT campus (MKI)
• Smithsonian Inst.
• Harvard U.
• U. Melbourne
• Curtin U. of Tech.

Also U. Wisc, U. Wash, ASU, and Victoria U. Wellington

• U. WA
• U. Tasmania
• U. Sydney
• ANU
• Raman Research Inst.
• CSIRO

Monday, 25 July 2011



MWA Specifications
✦ Snapshot imaging (0.5 - 8 sec)
✦ Lots of “cheap” antennas

✦ excellent instantaneous uv coverage
✦ well constrained calibration problem

✦ Fully-polarised (Stokes images)
✦ Wide frequency range (31 MHz from 80–300 MHz)

✦ frequency resolution of 40 kHz (768 channels)

✦ Wide, steerable field of view (10-50 degrees)
✦ A few arc-minute resolution (1.5 km: ~ 2.3' - 8.6')

✦ plus a 3 km ring of outriggers (~ 1.1' - 4.3')
✦ ~ km baselines → ~ 2D ionospheric models
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Murchison Radio Observatory

Shire of Murchison
Pop: ~ 115 in 41173 km2

ORBCOMM
Other Satellites

Terrestrial

Offset due to 
the galaxy

RADCAL,
DMSP F15, ...

FM Radio

Aviation, ...
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Lonsdale et al.
arXiv:0903.1828

Image 
Accumulation 
and Storage

MWA analysis pipeline

FPGAs

Real-Time System: CPUs/MPI + GPUs

Edgar et al.
arXiv:1003.5575
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Wide-field Approaches
✦ c.f., Cornwell et al., arXiv:0807.4161
✦ 3D transform

✦ FFT (sparse volume)
✦ DFTs (expensive)

✦ 2D transforms
✦ image-plane facets
✦ uvw-space facets
✦ warped snapshots
✦ w-projection

✦ Combinations (e.g., peeling and segmenting)

Good fit for MWA
✦ snapshot imaging with image 

resampling for time-dependent 
ionospheric corrections (in 
image plane).

✦ snapshot imaging for transient 
detection.

✦ good snapshot beam.
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Warped Snapshots

Determine grid (wide-field effects & ionosphere) and weights 
(primary beams & potentially FR) for snapshots Re-sample to a constant frame for integration

Simulated data, centred at HA = -3.5 to +3.5 hrs

Monday, 25 July 2011



128T Correlator
4 pol., ~104 baselines

31 MHz / 40 kHz channels

0.5 s dumps: 2.4 Gbits/s

2,4,8 s dumps: 0.24 Gbits/s

Real-Time System
 ⎯ Calibrator Measurement Loop (peeling) ⎯ 

 ⎯ Imaging Pipeline ⎯ 

 ⎯ Wide-field Calibration ⎯ 

k++

To 
Database

Primary beam fits
Change at the beam-
former update rate.

Ionospheric refraction
phase screen fits over FOV
Use full band & λ2 dep. to 

isolate from instrument phases.

To 
Database

Transient front-end

EoR front-end

GEG front-end

SHI front-end

Visibility integrator
Integrate to  2-8 sec; 40 kHz,
RFI detection & flagging, etc.

Measure ionospheric
refractive offsets

Measure 
tile Jones matrices

Initialize sky model and 
subtract vis. (set k=0)

⎯ OR ⎯
Update sky model and 

adjust visibility 
subtraction

Resample images
remove ionospheric &
wide-field distortions.

FFT imaging
4 polarizations

40 kHz channels 8s cadence

Phase vis. to calibrator k
& average in time and freq || by frequency

|| by sub-band

Grid visibilities
apply cal. (PB kernels),

small w-projection

Memory buffer

Memory 
buffer
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CPU+GPU Status
 ⎯ Calibrator Measurement Loop (peeling) ⎯ 

 ⎯ Imaging Pipeline ⎯ 

k++

Visibility integrator
Integrate to  2-8 sec; 40 kHz,
RFI detection & flagging, etc.

Measure ionospheric
refractive offsets

Measure 
tile Jones matrices

Initialize sky model and 
subtract vis. (set k=0)

⎯ OR ⎯
Update sky model and 

adjust visibility 
subtraction

Resample images
remove wide-field 

distortions.

FFT imaging
4 polarizations

40 kHz channels 8s cadence

Phase vis. to calibrator k
& average in time and freq

Grid visibilities
(simple kernels)

Memory buffer

Correlator
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Real-Time Computer
✦ Parallel over frequency

✦ MPI

✦ 32 servers
✦ 2 × Xeon X5650, 6 core, 2.66 GHz
✦ 2 × nVIDIA Tesla M2070
✦ 2 × 300GB SAS RAID (6Gbps)
✦ Have ~ 1/3 in Perth now

✦ 512T tests
✦ 12 freq. channels per GPU
✦ 21 degree FoV
✦ 50 sources calibrated & peeled
✦ Does not include all-sky primary 

beam and ionospheric phase fits
✦ 2.66 GHz quad core Nehalem + 

NVIDIA C1060 Tesla GPU
✦ completed in < 8 seconds

Greenhill et al.
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Iterative Deconvolution

Stored
RTS cal. data

Grid, FFT, 
re-sample & 

integrate

Stored
RTS images

Subtract model from images

Initial sky model

Generate
model visibilitiesUpdate cal. 

models

Stored 
vis. data

Subtract model 
visibilities & 

run CML

Grid, FFT, 
re-sample & 

integrate

major cycle

Subtract model from visibilities
e.g., Bhatnagar et al., arXiv:0805.0834

Update
sky model

Convert res. images to Stokes
Add sky model if needed

Vobs

Vres

Vmdl

test

Ires

Initial sky model

Generate
model visibilities

Vmdl

Imdl

Update
sky model

test

Ires

Subtract model 
images & 
integrate

Convert res. images to Stokes
Add sky model if needed

minor cycle

RTS

CORR

Initial cal. models
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Project Status

✦ Focused on building a fully-operational 128-tile 
array (current funding limit). Infrastructure 
designed with expansion in mind.

✦ Currently working through the details of the 
infrastructure tender process.

✦ Running a 32-tile array in expedition mode 
(several expeditions per year).
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128T Correlator

16 32 64 128 256 512 1024 2048
Number of stations
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F = 16
F = 64
F = 256
F = 1024

1063 GFLOPS = 79% peak
67 GB/s  = 38% peak

✦ For 128T, the “X” part of the 
planned 512T correlator will 
be replaced with GPUs. 
✦ F-engines: 2-stage FPGA PFBs

✦ X-engines: RTC hardware

✦ All x-engines can fit on ~11 
NVIDIA M2070s
✦ leaving ~ 53 for the RTS

✦ An alternative is to split the x-
engines over all 64 GPUs and 
combine them with the RTS

Clark etal., arxiv:1107.4264
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MWA 32-tile Prototype
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30’ resolution
MWA  @2.6m wavelength.

Centaurus A
Optical

F. Briggs & S. Tingay
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FM-band Sky Survey

Hydra A

Real-time calibration & imaging
with off-line t & ν averaging

No deconvolution. max, rms ~ 215, 0.75 Jy/beam

30°

G. Bernardi
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FM-band Sky Survey

Hydra A

Real-time calibration & imaging
with off-line t & ν averaging

No deconvolution. max, rms ~ 215, 0.75 Jy/beam1 source peeled. max, rms ~ 21, 0.36 Jy/beam

30°
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FM-band Sky Survey

Hydra A

Real-time calibration & imaging
with off-line t & ν averaging

No deconvolution. max, rms ~ 215, 0.75 Jy/beam1 source peeled. max, rms ~ 21, 0.36 Jy/beam7 sources peeled. max, rms ~ 11, 0.29 Jy/beam

30°

G. Bernardi
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Pictor A field

G. Bernardi
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Pictor A field
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Fornax A

G. Bernardi
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Fornax A
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Fornax A

G. Bernardi
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Primary Beam Measurements

J0444-2905

G. Bernardi
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Primary Beam Measurements
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Primary Beam Measurements

J0444-2905

G. Bernardi
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Simple Beam Model

G. Bernardi
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Simple Beam Model

The beam is accurate at a 2% level
and predicts the source fluxes with 5% rms accuracy

G. Bernardi
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Calibrated Zenith Strip

G. Bernardi
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32T Solar Imaging

Dynamic range ~2500

Oberoi et al., 2011, ApJL, 728:L27 
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Fig. 2.— The left panels show the amplitude (arbitrary units), and the right ones the phase (in degrees) of the
observed visibilities as a function of frequency for the XX polarization. The top and bottom rows correspond to
baselines with projected lengths of ∼40λ and ∼196λ, respectively, at the band center (186.26 MHz). For each of the

panels, the frequency (x-axis) ranges from 170.8 MHz to 201.6 MHz, and the time (y-axis) spans about 550 s starting
at 04:24:53 UT. The dark vertical streaks arise due to flagging of the first and last two spectral channels for each of

the coarse channels (Sec. 2).

Full-res. Simulation
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32T Solar Spectra

Oberoi et al., 2011, ApJL, 728:L27 
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Fig. 2.— The left panels show the amplitude (arbitrary units), and the right ones the phase (in degrees) of the
observed visibilities as a function of frequency for the XX polarization. The top and bottom rows correspond to
baselines with projected lengths of ∼40λ and ∼196λ, respectively, at the band center (186.26 MHz). For each of the

panels, the frequency (x-axis) ranges from 170.8 MHz to 201.6 MHz, and the time (y-axis) spans about 550 s starting
at 04:24:53 UT. The dark vertical streaks arise due to flagging of the first and last two spectral channels for each of

the coarse channels (Sec. 2).

Full-res. Simulation
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5-bit pulsar detections

Steve Ord

Monday, 25 July 2011



1-bit pulsar detections

Steve Ord
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Summary

✦ The current focus is a fully operational 128-tile 
array.

✦ Infrastructure tender process is underway, 
with array expansion part of the design.

✦ Approximately 1/3 of the RTC hardware is in 
Perth, and we will have a CDR very soon.

Monday, 25 July 2011


