The LOFAR MKSP RM-Synthesis Pipeline

Anna Scaife (DIAS)

on behalf of

Mike Bell (MPIA Garching)

& the LOFAR MKSP

CALIM 2011, University of Manchester

Dublin Institute for Advanced studies Institiúid Ard-Léinn Bhaile Átha Cliath

Rotation Measure Synthesis The LOFAR BM Synthesis Pipeline Imaging, Deconvolution & Object Detection

Faraday Rotation

$$\phi = 0.81 \int_{\text{pc}} \frac{n_e}{\text{cm}^{-3}} \frac{B_{||}}{\mu \text{G}} \text{d}z \text{ rad } \text{m}^{-2}$$

For an external screen: $\phi = RM$

F(φ)

Faraday Depth

In general:

$$\phi \neq RM$$
, $RM = \frac{d\chi(\lambda^2)}{d\lambda^2}$ where $\chi = \frac{1}{2} \tan^{-1} \frac{U}{Q}$.

For the single source:

$$\chi(\lambda^2) = \chi_0 + \phi \lambda^2$$
, therefore $\frac{d\chi(\lambda^2)}{d\lambda^2} = \phi = RM$.

Multiple Faraday structures:

$$P(\lambda^2) = \int F(\phi) e^{2i\phi\lambda^2} d\phi$$
 (Burn 1966)

That single source again:

$$F(\phi) = \delta(\phi - \phi_0) \rightarrow P(\lambda^2) = e^{2i\phi_0\lambda^2} = \cos(2\phi_0\lambda^2) + i\sin(2\phi_0\lambda^2) = Q + iU$$

RM Synthesis

The Faraday dispersion function is a Fourier relationship:

 $P(\lambda^2) = \int F(\phi) e^{2i\phi\lambda^2} d\phi$ (Burn 1966)

$$F(\phi) = \int P(\lambda^2) e^{-2i\phi\lambda^2} d\phi$$

Similarly to the relationship between the *uv* and image planes in aperture synthesis it is not fully sampled:

$$P(\tilde{\lambda}^2) = W(\lambda^2)P(\lambda^2)$$

We get a response function similar to that of a PSF:

$$RMSF(\phi) = \frac{\int_{-\infty}^{\infty} W(\lambda^2) e^{-2i\phi\lambda^2} d\lambda^2}{\int_{-\infty}^{\infty} W(\lambda^2) d\lambda^2}$$

Brentjens & de Bruyn 2005

RM Synthesis

Resolution is a function of coverage in λ^2 : $\delta \phi \approx \frac{2\sqrt{3}}{\Delta \lambda^2}$ $\begin{array}{l} \text{Sensitivity to maximum scale in } \phi \text{ is a} \\ \text{function of resolution in } \lambda^2 \text{:} \\ ||\phi_{\max}|| \approx \frac{\sqrt{3}}{\delta\lambda^2} \end{array}$

RM Synthesis

- RMSF from 30-50 MHz + 60-80 MHz: $\delta \phi = 0.05 \text{ rad m}^{-2},$ $\phi_{\text{max}} = 19 \text{ rad m}^{-2}$
- RMSF from 120-150 MHz + 180-210 MHz: $\delta \phi = 1.0 \text{ rad m}^{-2}$, $\phi_{\text{max}} = 1200 \text{ rad m}^{-2}$

Heald 2009

RM Synthesis Pipeline

- FFT based synthesis
- RM-Clean and Wiener Filter deconvolution implemented
- Wavelet deconvolution under development
- Supports multiple image formats

RM Synthesis Pipeline

Early Results

Heald et al. 2011

Early Results

Early Results

Andreas Horneffer

Early Results

Andreas Horneffer

RM Synthesis Pipeline

Early Results

 Observation split into 8×1 hour blocks

Andreas Horneffer

Aris Noutsos

Charlotte Sobey

RM Clean

RM Clean (Heald 2009)

Works in the same way as standard CLEAN Iterative subtraction of a δ -fnc scaled by a loop gain factor.

RM Clean

RM Clean (Heald 2009)

Works in the same way as standard CLEAN lterative subtraction of a δ -fnc scaled by a loop gain factor.

RM Synthesis Pipeline

Fan region

Marijke Haverkorn

Extended emission (Fan region)

WSRT

Extended emission (Fan region)

LOFAR: Marco Iacobelli & Marijke Haverkorn

RM Synthesis

Faraday spectra are **complex**: the modulus defines the emission and the phase the PA

$$\begin{aligned} \mathcal{P}(\lambda^2) &= \int \epsilon(z) \mathrm{e}^{2i\chi(z)} \mathrm{e}^{2i\phi(z)\lambda^2} \mathrm{d}z \\ \mathcal{F}(\phi) &= \epsilon(\phi) \mathrm{e}^{2i\chi(\phi)} \left(\frac{\mathrm{d}\phi}{\mathrm{d}z}\right)^{-1} \end{aligned}$$

Standard RM Synthesis does not recover the complex components as there is no information at $\lambda^2 < 0$

Requires a degree of inference about the underlying signal distribution

Frick et al. 2010

RM Synthesis

Wavelet based RM Synthesis can recover real and imaginary parts of $F(\phi)$ more accurately

Requires a degree of inference about the underlying signal distribution \rightarrow symmetry of dispersion function

Frick et al. 2010

Inference Based Reconstruction

max L subject to ⊓

Signal	Method
Sparse in pixel space (Dirac basis)	CLEAN
Sparse in some basis + RIP	Compressed Sensing
Gaussian Random Field	Wiener filtering
Non-Gaussian Random Field	Information Theory

CS for Faraday Thin Sources

CS-RM-Thin

Li et al. 2011

Faraday Caustics

(Bell, Enßlin & Junklewitz 2011)

Caused by reversals of the B-field along the l.o.s.

Leads to Heaviside functions in the Faraday dispersion spectrum

CS for Faraday Caustics

$$\begin{split} &\min ||\bar{x}||_{\mathrm{TV}} \text{ subject to } \quad \tilde{\chi}^2 \leq \epsilon^2 \\ & \text{Generalized Gaussian Distribution:} \\ & P(\nabla x|\rho) \propto \exp - |\frac{\nabla x}{\rho s}|^q \\ & \text{Sparse if } q \leq 1 \\ & \min ||\bar{x}||_{\mathrm{TV}}^q \text{ subject to } \quad \tilde{\chi}^2 \leq \epsilon^2 \\ & \text{(Wiaux, Puy & Vandergheynst 2010)} \end{split}$$

LOFAR RM Pipeline Status

Task	Status
Definition of input/output format(s)	Not started
DFT synthesis algorithm	Done
Gridding & FFT synthesis algorithm	Translate to C++
RMCLEAN algorithm	Translate to C++
Wiener Filter algorithm	Done
Support for automatic beam convolution	Translate to C++
Document	On going

Conclusions

- Polarization imaging is already possible with LOFAR. . . although polarization calibration currently isn't
- There is an interim RM synthesis pipeline (python-based) in place
- The RM synthesis pipeline accepts both imaging and pulsar pipeline data
- Reconstruction of complex Faraday spectra requires some prior information on the signal
- Inference based reconstruction methods are under development for the pipeline