Imaging using GPU

V-K Veligatla, Kapteyn Institute P. Labropoulos, ASTRON and Kapteyn Institute L. Koopmans, Kapteyn Institute

Introduction

- What is a GPU?
- Why another Imager?
 - Large amount of data to be processed.
 - W-projection is a requirement.
- Issues to Consider
 - Wide field imaging
 - Full Stokes
 - Speed
 - Experiment with New approaches

Basic Imaging Equation

$$V(u, v, w) = \int \frac{I(l, m) B(l, m)}{\sqrt{1 - l^2 - m^2}} e^{-2\pi i (ul + vm + w(\sqrt{1 - l^2 - m^2} - 1))} dl dm$$

- For low frequency wide-field imaging the assumption w~0 does not hold
- If w=0, then visibilities = FFT(image)
- But this is not always the case hence W-Projection. (S. Bhatnagar and T.J.Cornwell)

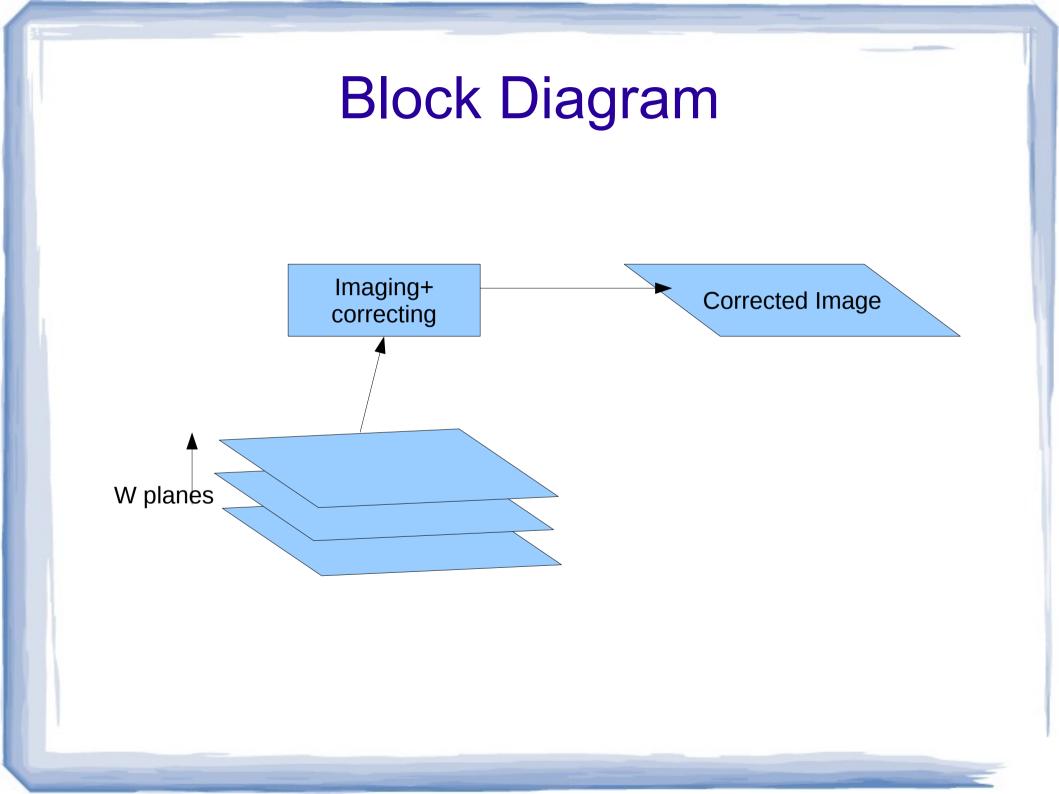
W-Projection

$$V(u, v, w) = \int \frac{I(l, m) B(l, m)}{\sqrt{1 - l^2 - m^2}} e^{-2\pi i (ul + vm + w(\sqrt{1 - l^2 - m^2} - 1))} dl dm$$

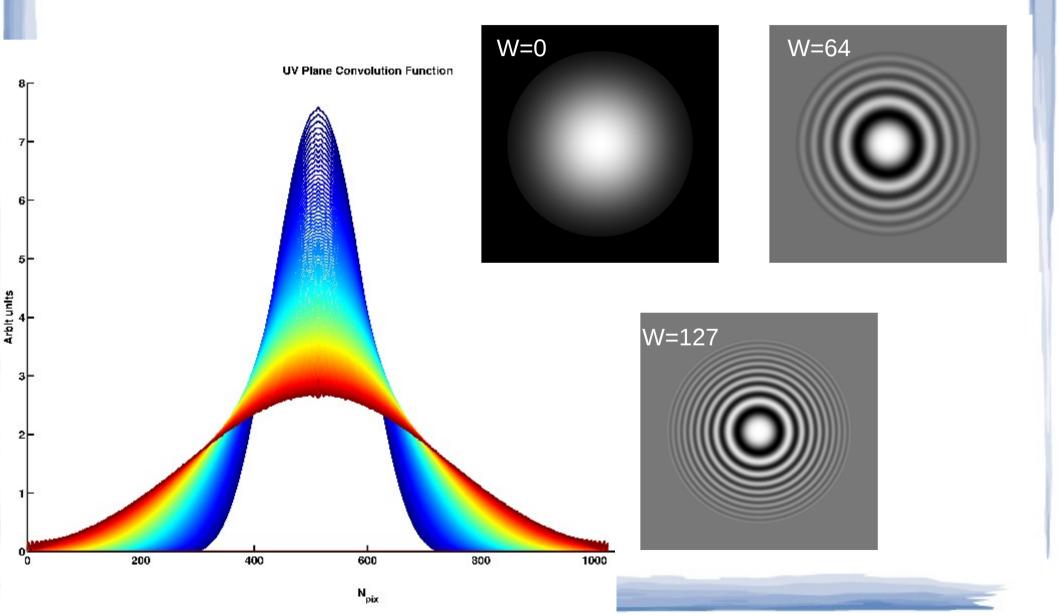
Assuming W is constant for a given plane of UV values

$$V(u, v, w) = \int e^{-2\pi i [w(\sqrt{1-l^2-m^2}-1)]} \frac{I(l,m)B(l,m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i (ul+vm)} dl dm$$

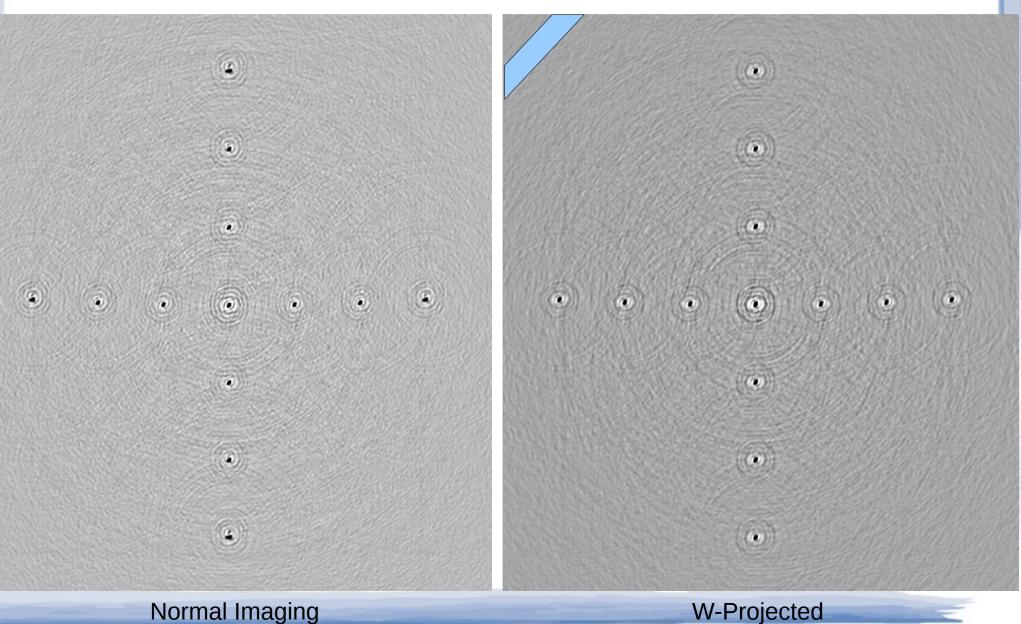
Correction Term



Wproj Convolution function



Results (Simulation)



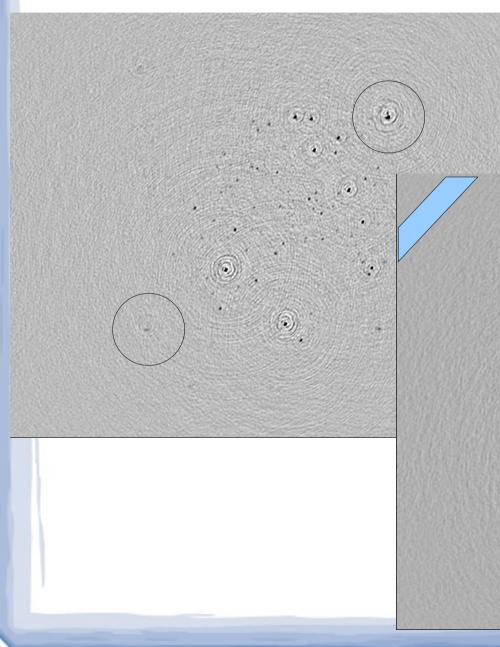
Normal Imaging

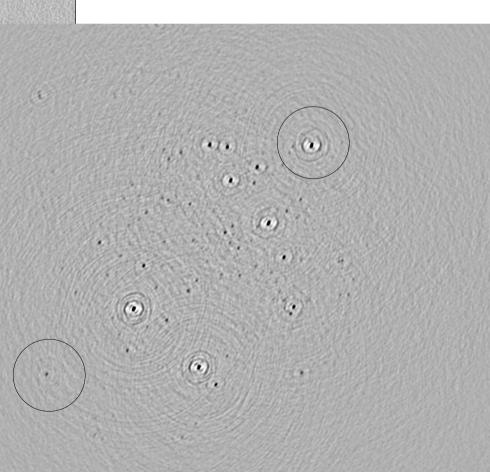
Results (Simulation)



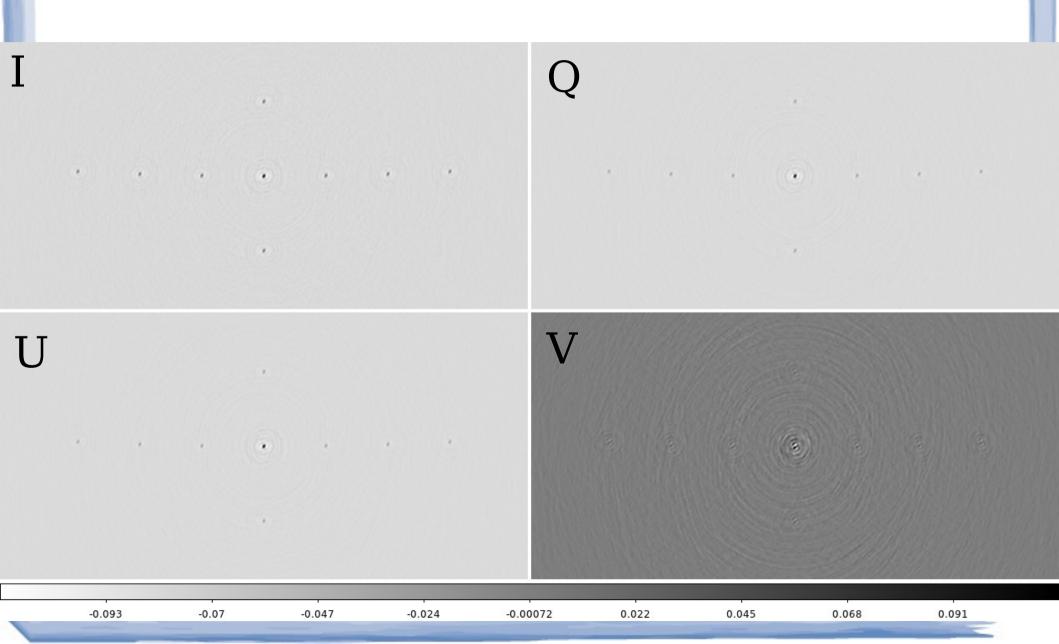
Normal Imaging

3C196 W-Corrected

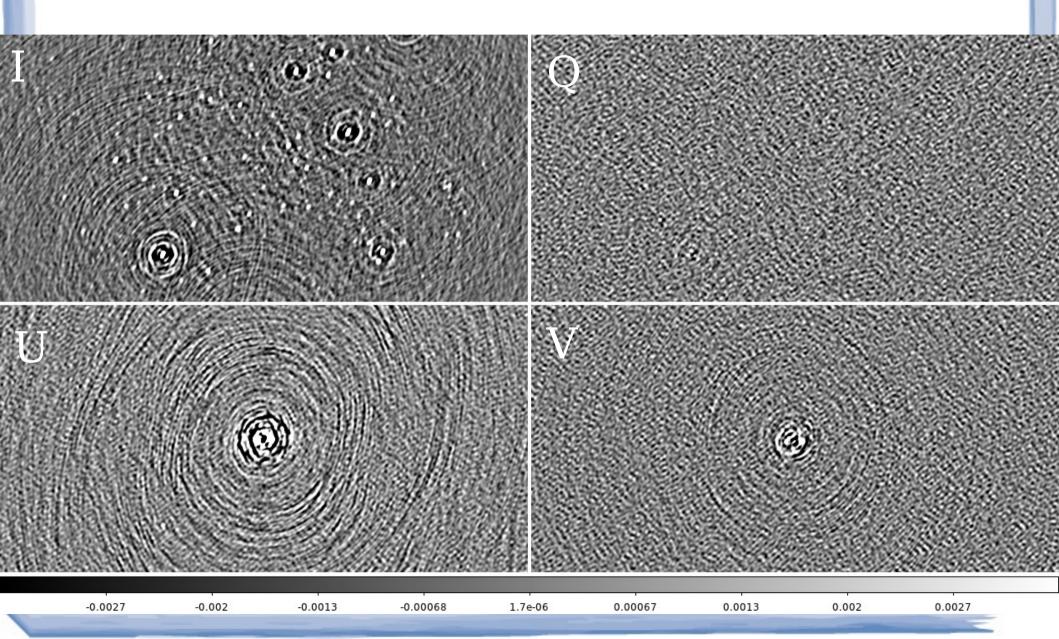




Full Stokes (Sim)



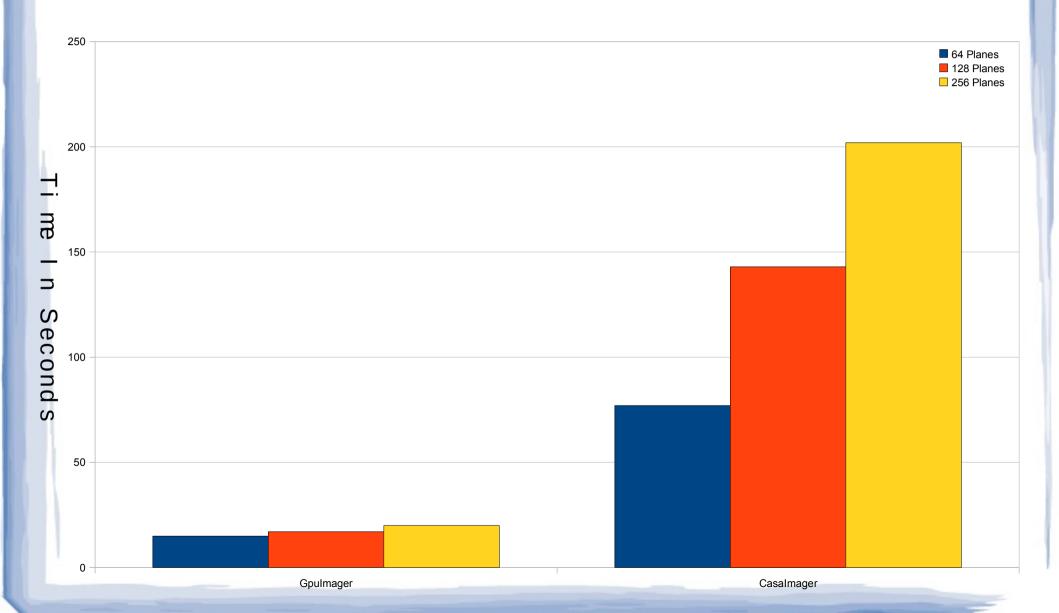
Full Stokes 3C196



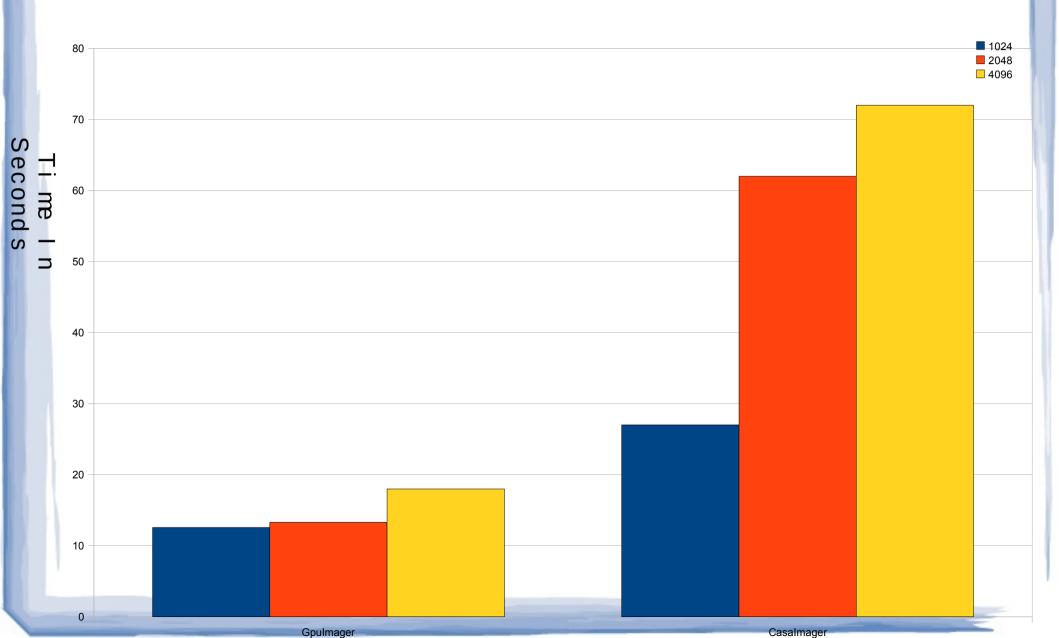
LOFAR Eor GPU Cluster

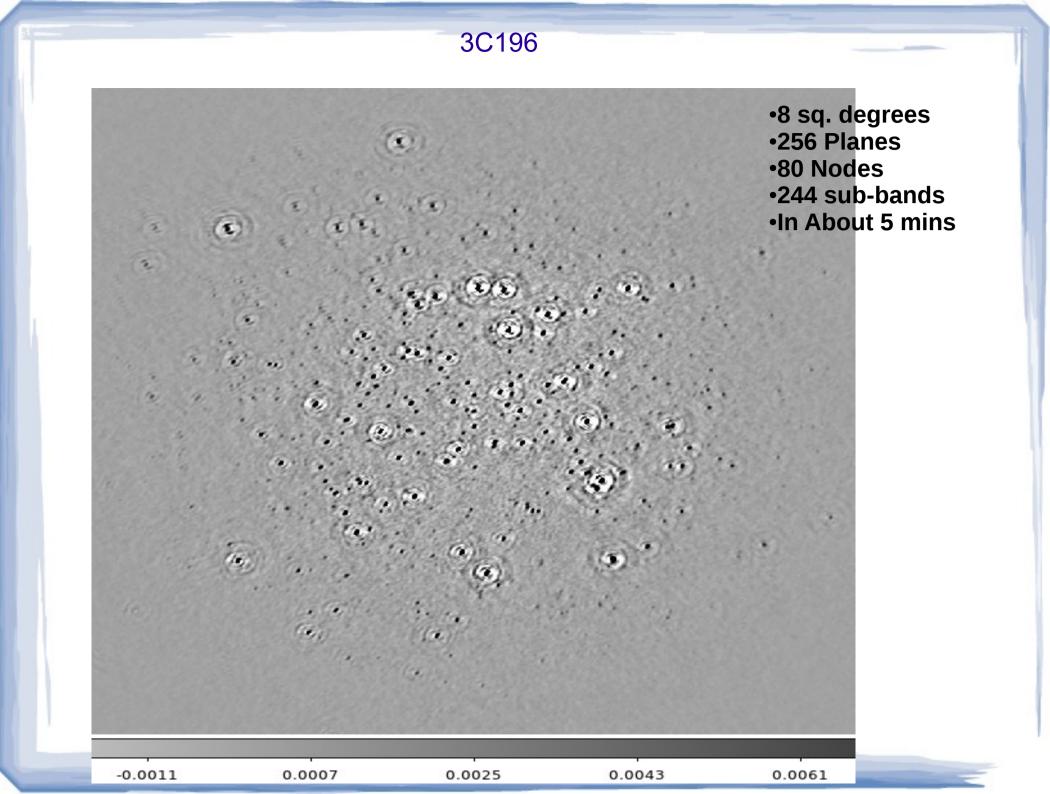
- Configuration
 - 2 x Tesla M1060 (GPU)
 - Computing capability 1.3
 - 240 Processing cores @ 602 MHz
 - 4GB Memory
 - 16 x Intel(R) Xeon(R) CPU E5520 2.27GHz
 - 12 GB Ram
 - 80 nodes

W-Projection Performance



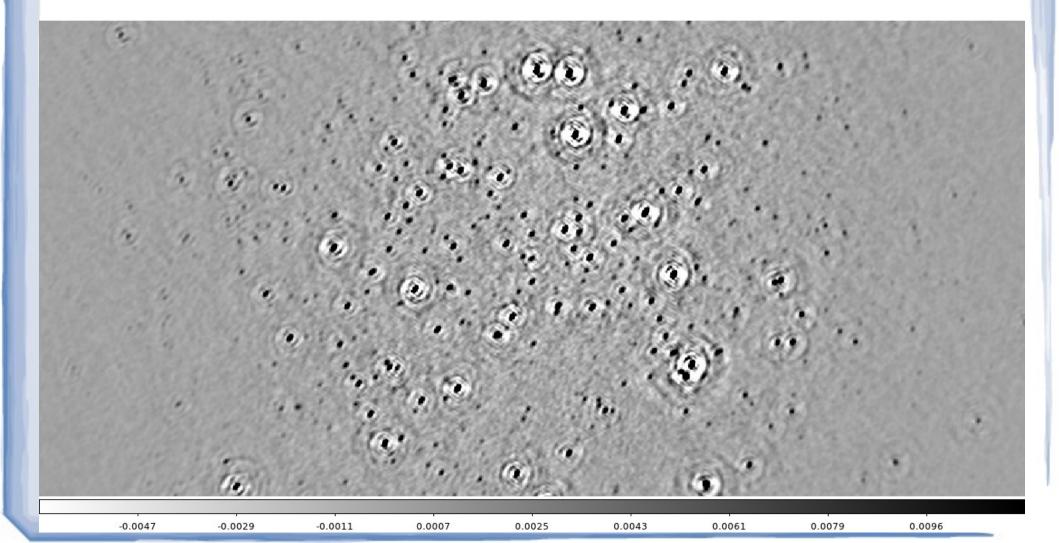
Without W-Projection





3C196 (zoomed)

0.5 mJy rms noise at the edge of the image



Future Plans

- We are working on implementation of MVDR on the gpu.
- Experimenting with Weighting and Convolution schemes in the UV plane.
- Incorporating a very fast calibration scheme into the imager so both are done together

Thank You

Introduction

- What is a GPU?
- Why another Imager?
 - Large amount of data to be processed.
 - W-projection is a requirement.
- Issues to Consider
 - Wide field imaging
 - Full Stokes
 - Speed
 - Experiment with New approaches

Why use GPU

- Hundreds of Processors
- Very well suited for matrix operations.
- Well suited for parallel tasks.
- With the latest APIs (CUDA, OpenCL) easy to program.

Basic Imaging Equation

$$V(u, v, w) = \int \frac{I(l, m) B(l, m)}{\sqrt{1 - l^2 - m^2}} e^{-2\pi i (ul + vm + w(\sqrt{1 - l^2 - m^2} - 1))} dl dm$$

- In general W~0 (U,V,W=0).
- This implies visibilities = FFT(image)
- But this is not always the case hence W-Projection. (T.J.Cornwell et all)

W-Projection

$$V(u, v, w) = \int \frac{I(l, m) B(l, m)}{\sqrt{1 - l^2 - m^2}} e^{-2\pi i (ul + vm + w(\sqrt{1 - l^2 - m^2} - 1))} dl dm$$

Assuming W is constant for a given plane of UV values

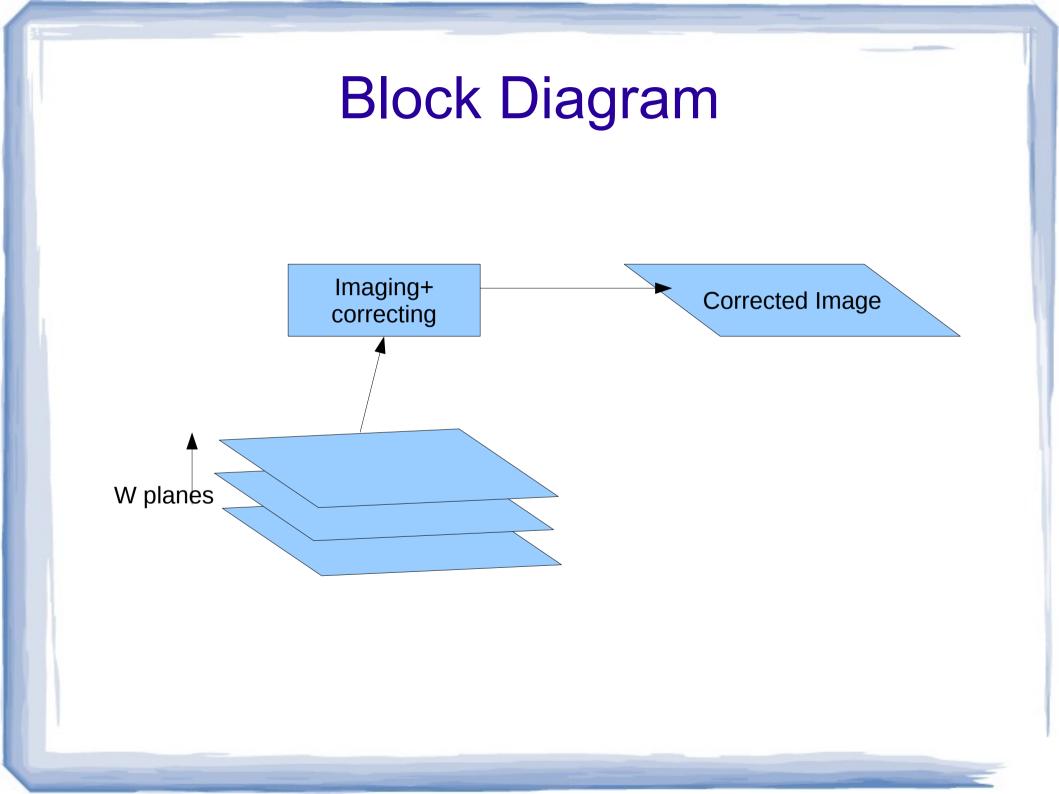
$$V(u,v,w) = \int e^{-2\pi i [w(\sqrt{1-l^2-m^2}-1)]} \frac{I(l,m)B(l,m)}{\sqrt{1-l^2-m^2}} e^{-2\pi i (ul+vm)} dl dm$$

$$G(l,m,w)$$

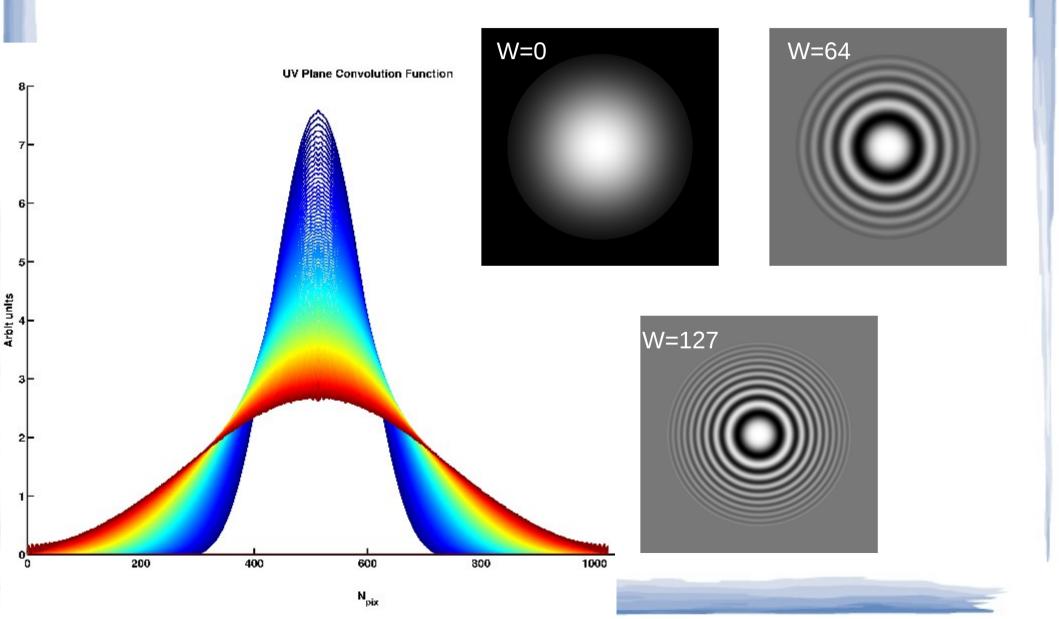
$$V(u,v,w) = G(l,m,w)V(u,v,w=0)$$

IFFT V(u,v,w)=G(l,m,w)×IFFT V(u,v,w=0)

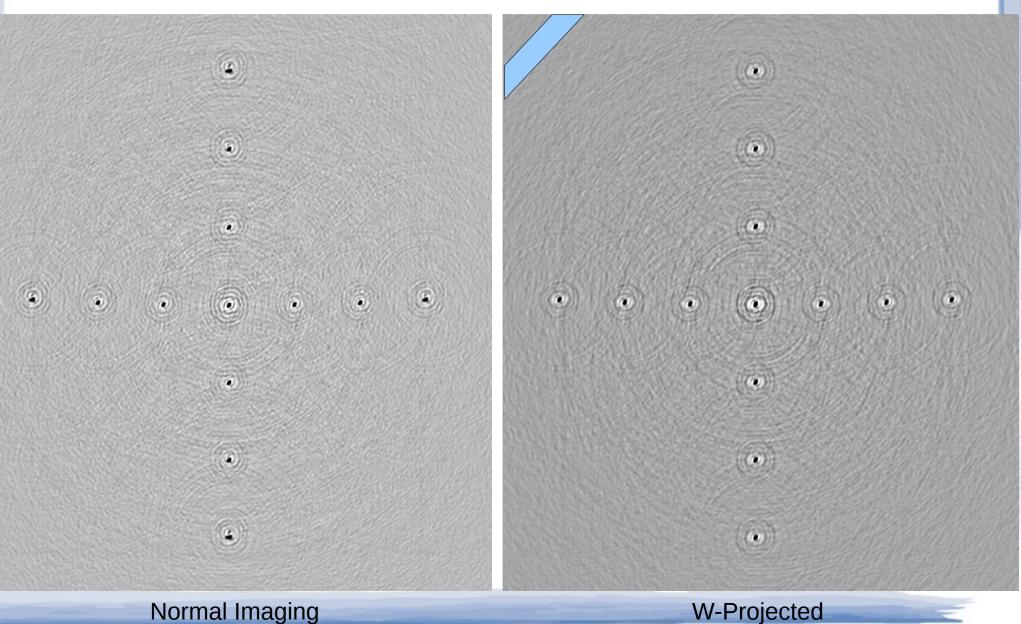
Ref:Tim Cornwell and Liu



W Correction



Results (Simulation)



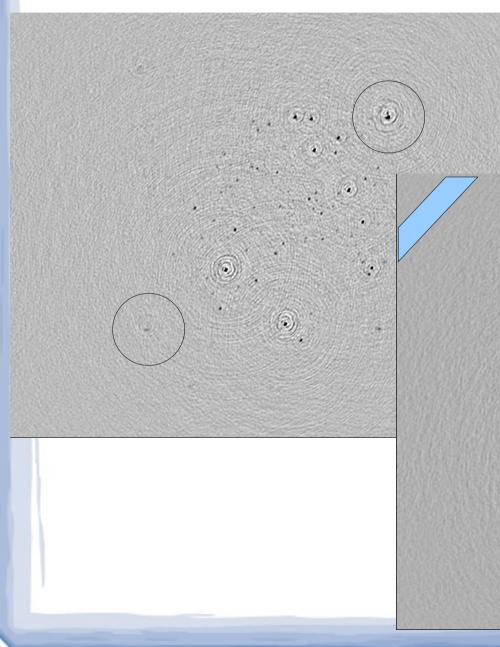
Normal Imaging

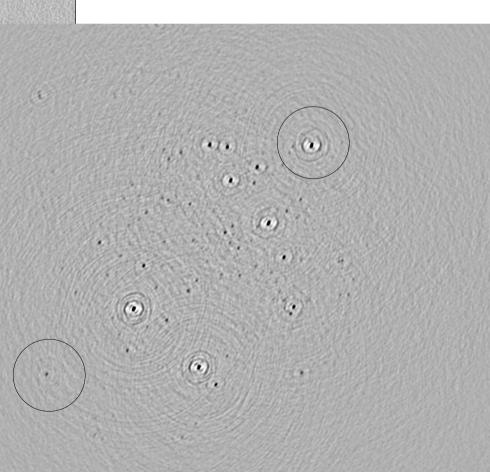
Results (Simulation)



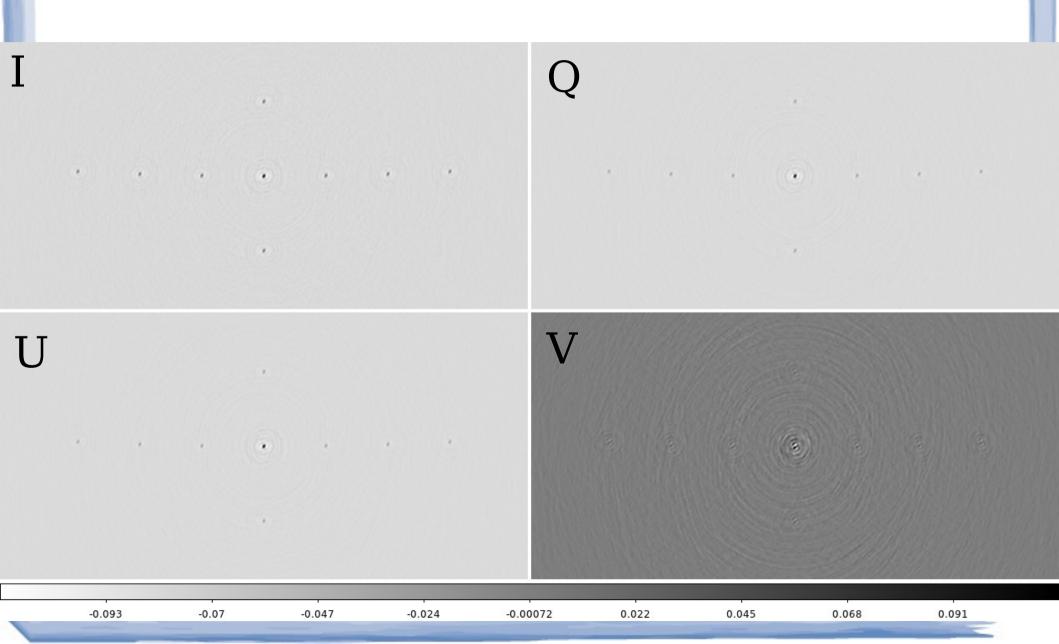
Normal Imaging

3C196 W-Corrected

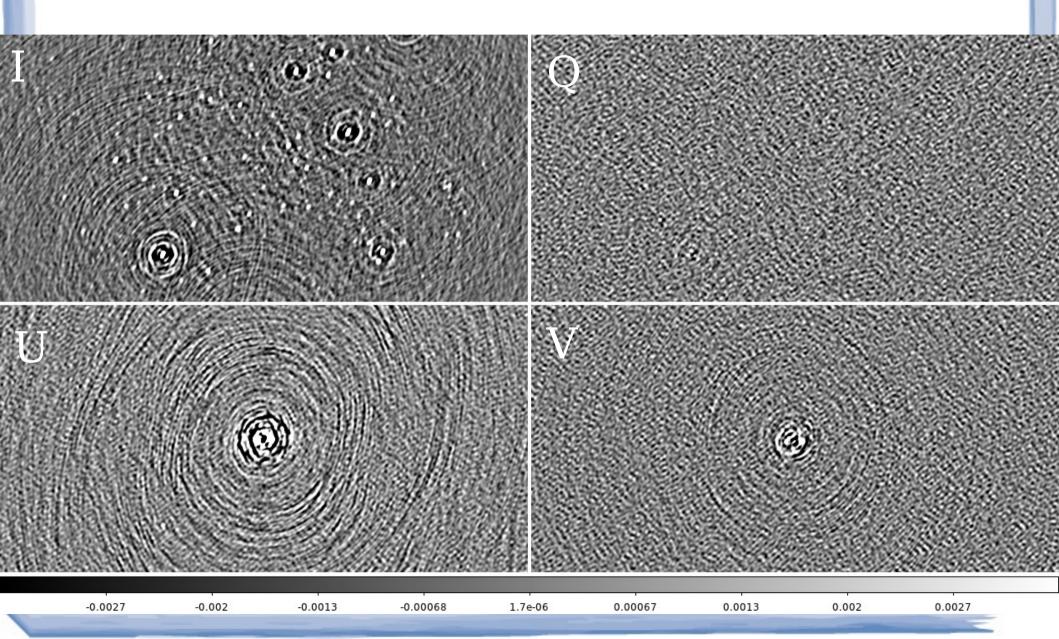




Full Stokes (Sim)



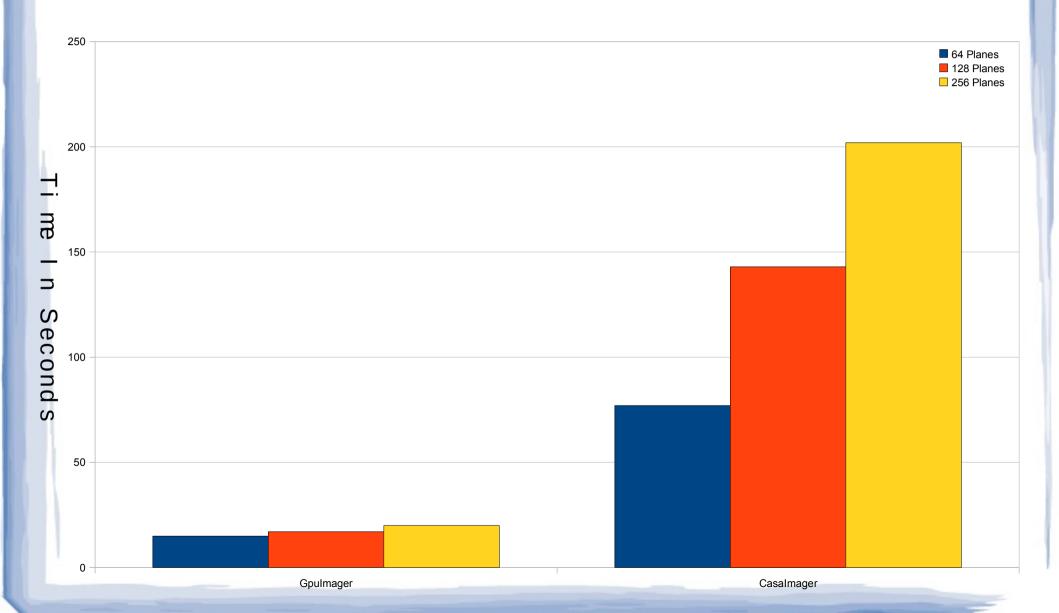
Full Stokes 3C196



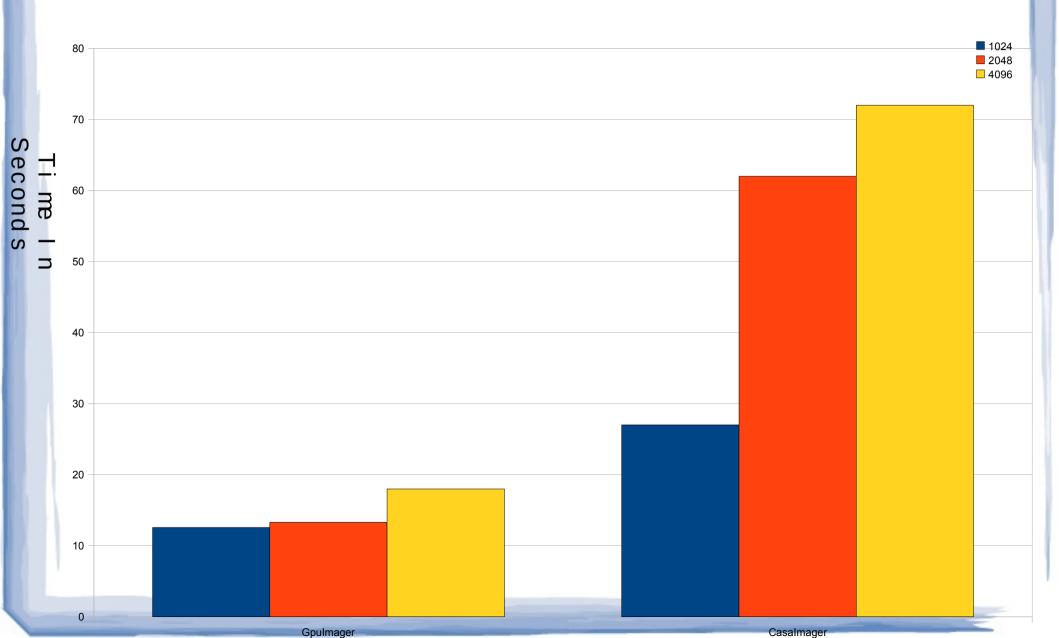
LOFAR Eor GPU Cluster

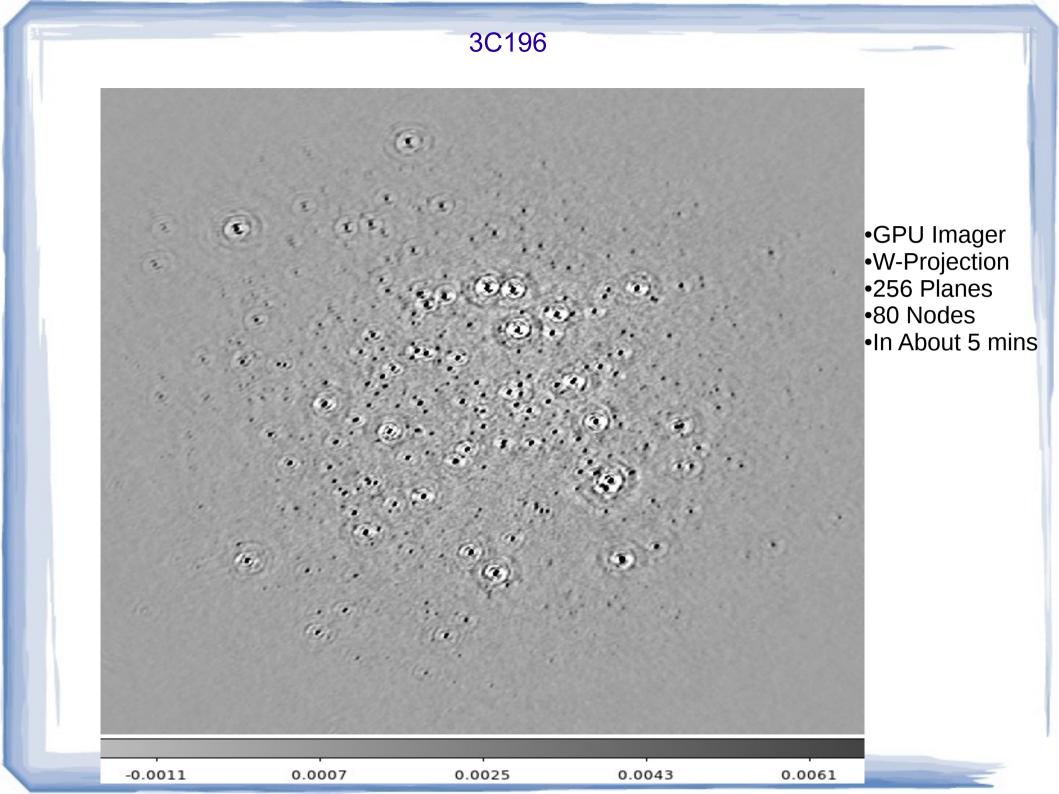
- Configuration
 - 2 x Tesla M1060 (GPU)
 - Compute 1.3 capable
 - 240 Processors @ 602 MHz
 - 4GB Memory
 - 16 x Intel(R) Xeon(R) CPU E5520 @2.27GHz
 - 12 GB Ram
 - We have 80 Such Nodes

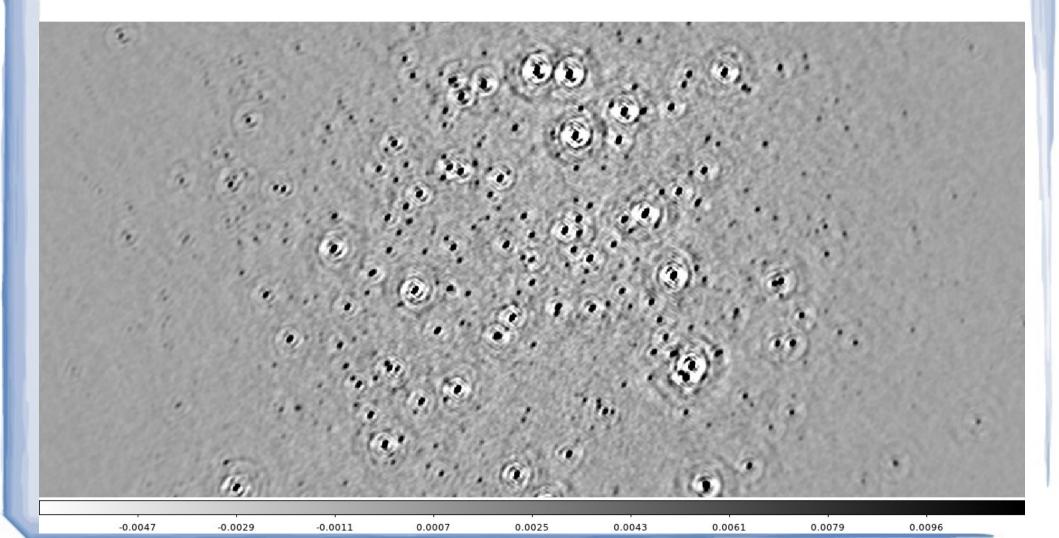
W-Projection Performance



Without W-Projection







LOFAR Eor GPU Cluster

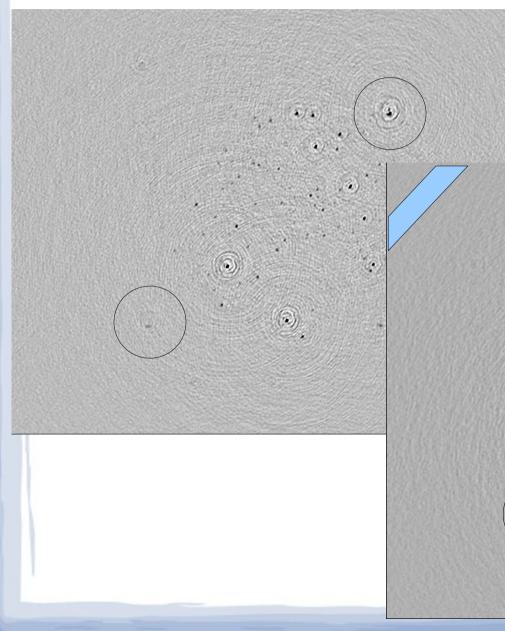
- Configuration
 - 2 x Tesla C1060 (GPU)
 - Compute 1.3 capable
 - 240 Processors @ 602 MHz
 - 4GB Memory
 - 8 x Intel(R) Xeon(R) CPU E5520 @2.27GHz
 - 12 GB Ram
 - We have 80 Such Nodes

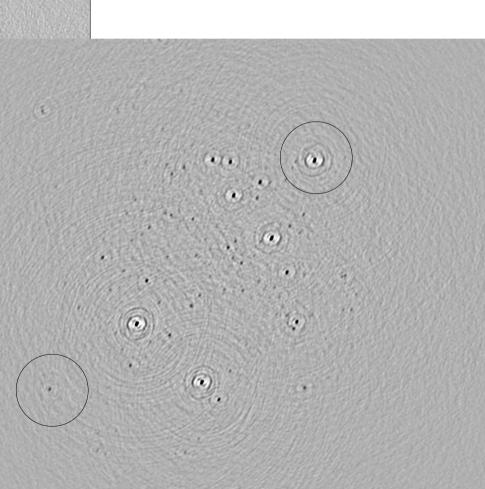
Results (Simulation)



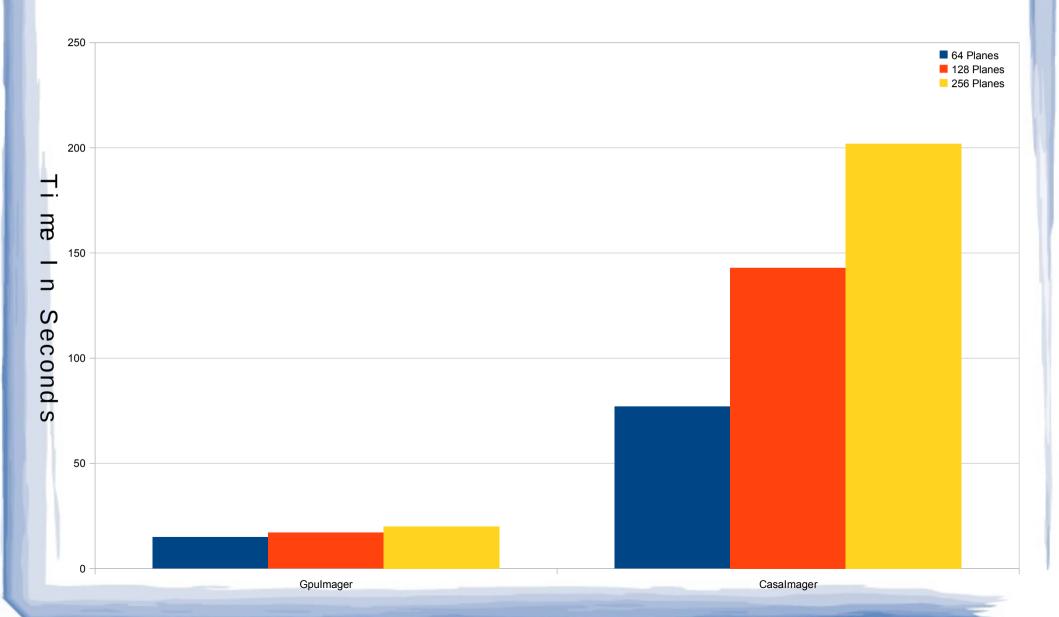
Normal Imaging

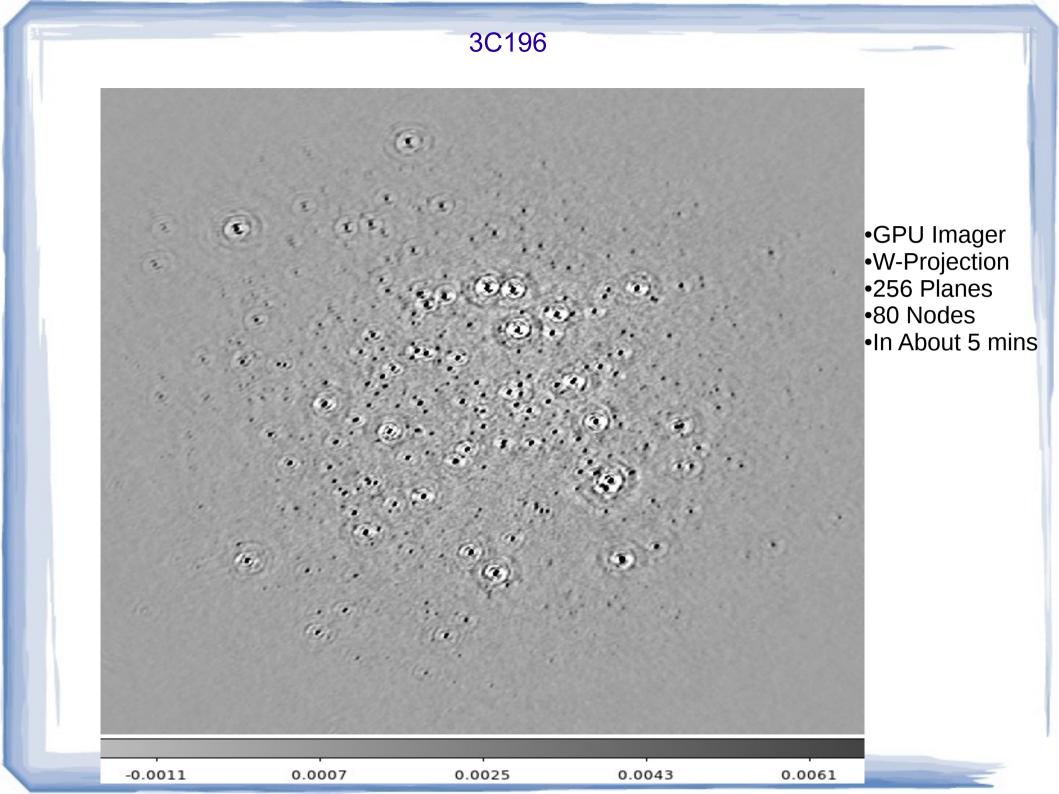
3C196 W-Corrected





W-Projection Performance





Minimum Variance Distortionless Response

- Minimizes side lobe gains (cause beam to vary spatially)
- Computationally intensive
- Parallel computation possible.
 - Dirty Image Equation: $I_k(l,m) = A_k^H(l,m) R_k A_k(l,m)$
 - $I_k(l,m)$ Pixel Intensity at l,m at time instance k
 - $A_k(l,m)$ Antenna steering vector
 - R_k Array correlation matrix (ACM).

MVDR

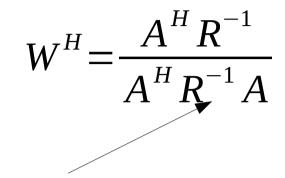
- The weights in dirty image A(I,m) are replaced with W(I,m)
- Weight set to minimize influence of interfering sources. $W = argmin_w W_H R W$
- Under the constraint $W^H A = 1$

$$W^{H} = \frac{A^{H}R^{-1}}{A^{H}R^{-1}A}$$

$$I_k(l,m) = W^H R W$$

Ref: R. Levanda and Amir Leshem, Liu at al., Stoica et al.

Challenges



Inverse of Visibility Matrix

- ACM close to singular.
- Diagonal loading, (non-linear) dimensionality reduction
- L-curve type of analysis to select diagonal loading strength

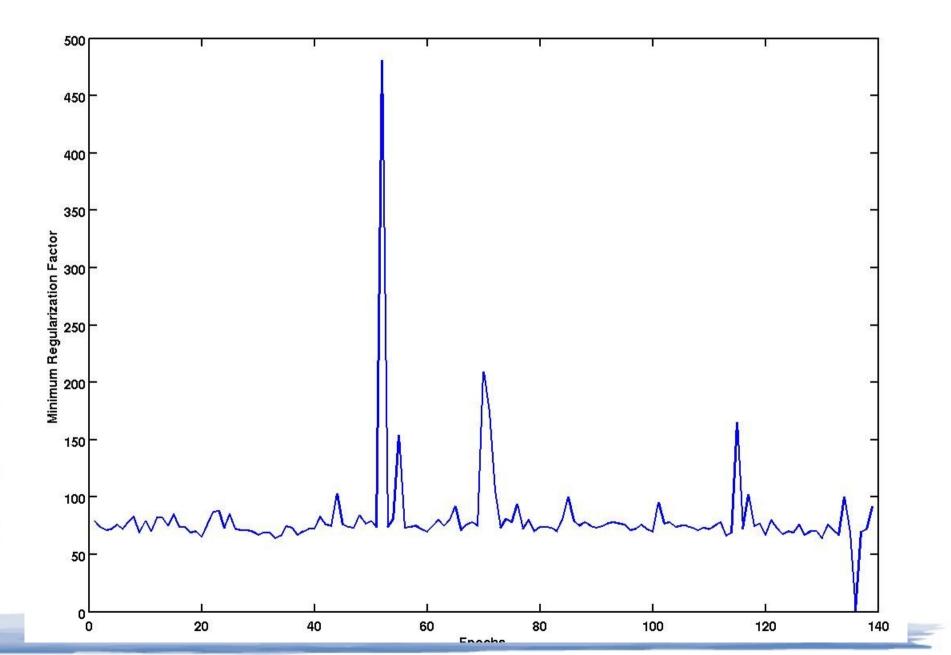
Challenges: beamformer power vs time

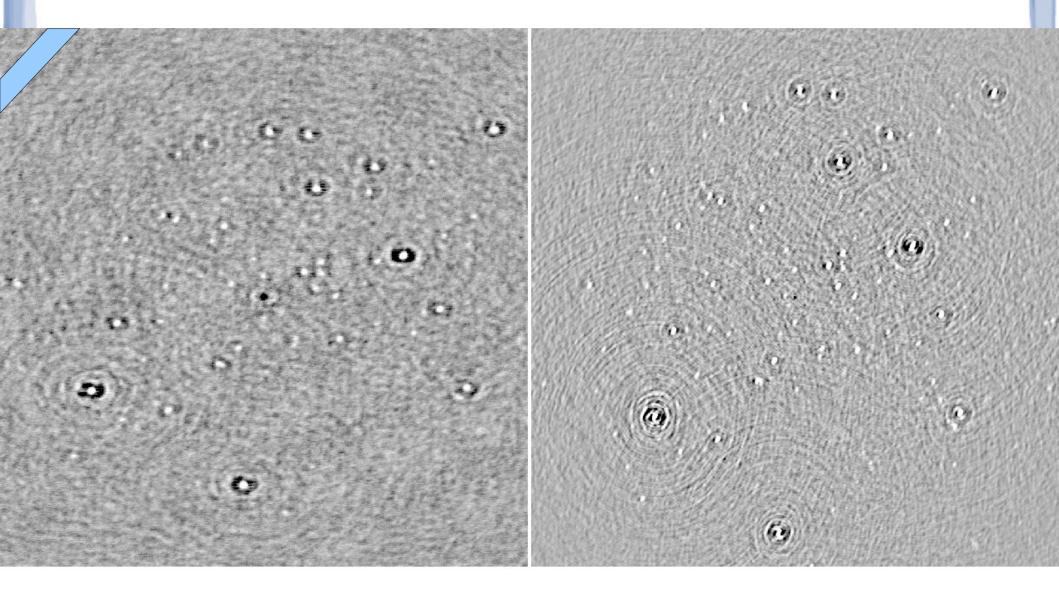
itle:/home/vkrishna/Documents/experi/ reator:MATLAB, The MathWorks, Inc. Vers reationDate:07/07/2011 15:17:26 anguageLevel:2

- Flagged/missing data
 => Higher Diagonal
 Loading Factor
- Higher regularization factor => higher the noise in that epoch

Cholesky
 Factorization to
 determine level of
 Regularization.

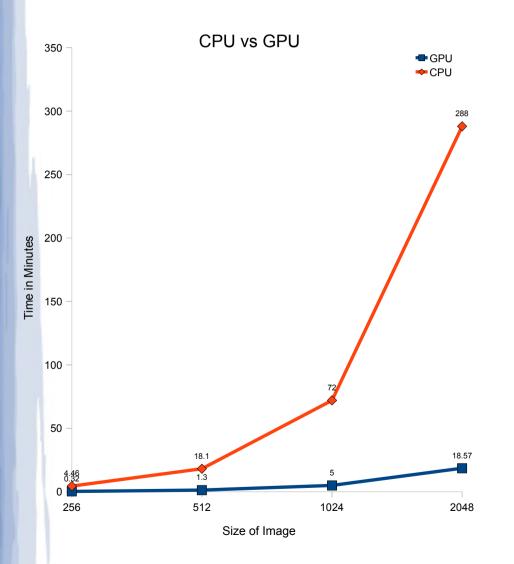
Noisy data





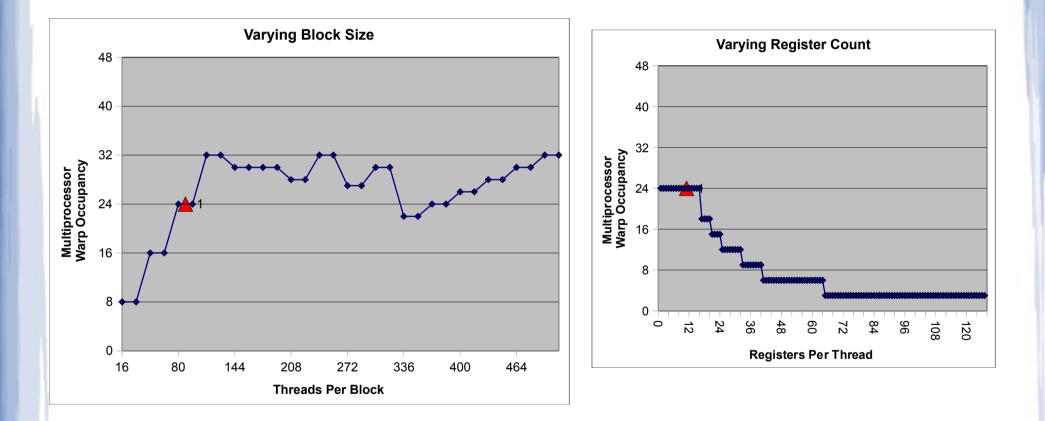
CPU vs GPU

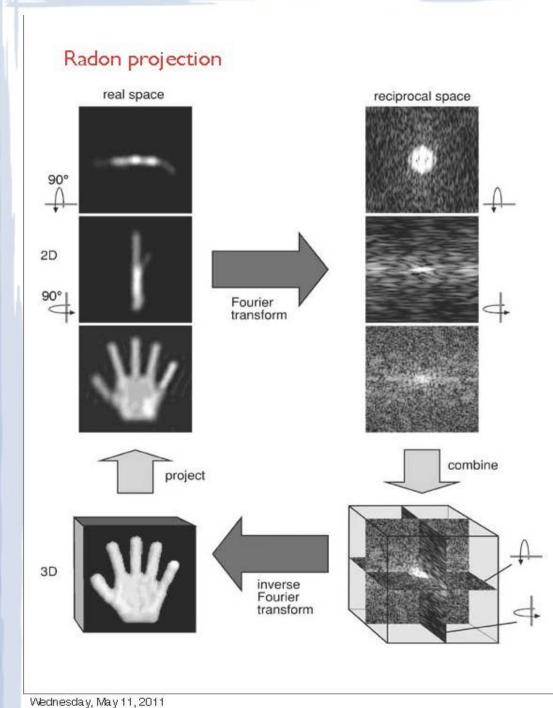
• CPU implementation:



- Threads equivalent to #processors on system
- Each Thread processes part of final image.
- GPU Implementation:
 - Multiple threads process a single pixel
 - Each thread calculates component of vector.

Optimization





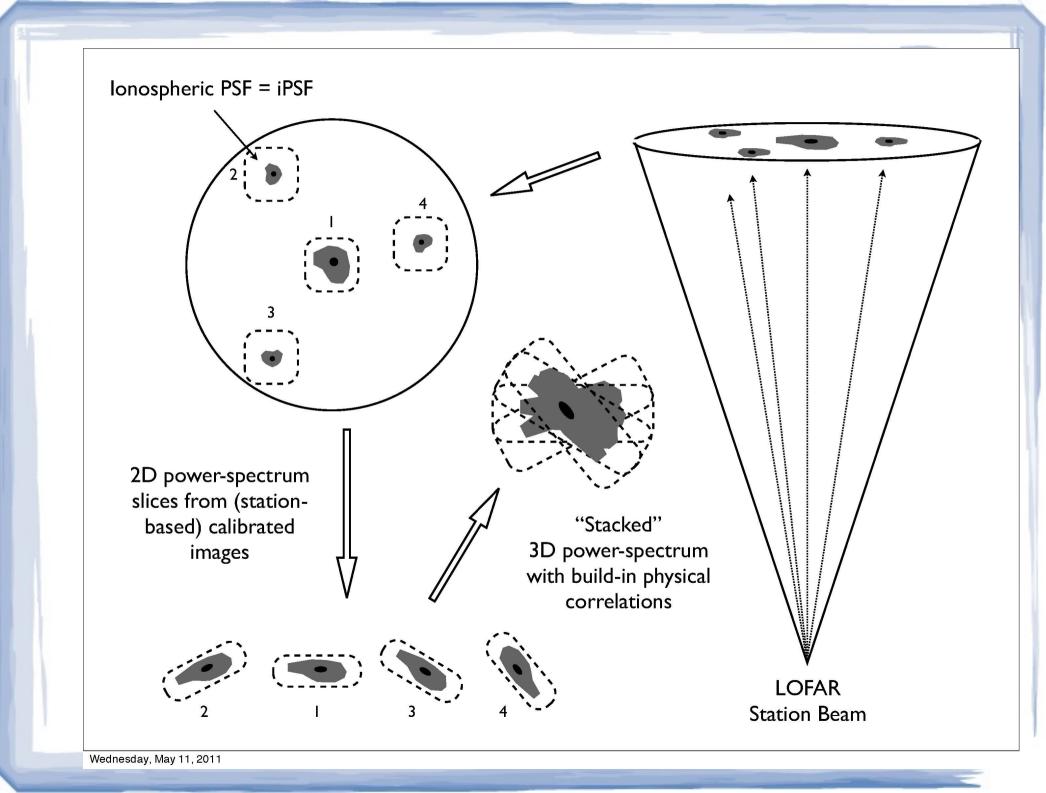
Tomography 101

1) Take 2D images of many projections of e.g. a hand (Radon projection)

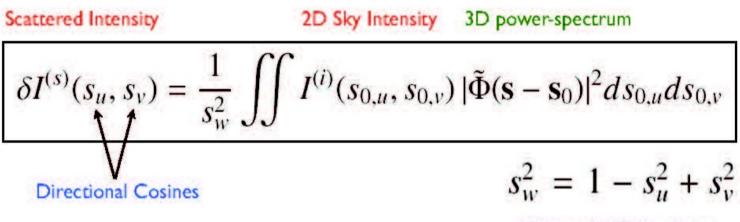
2) FT them

- 3) Combine 2D FTs into a single 3D FT. (Take projection angles into account)
- 4) 3D FT this to a 3D image of hand.

That is all there is to tomography



Power-spectrum Tomography



Geometric Term due to Curve Sky and Planar Array

Rescaled Intensity

$$\delta J^{(s)}(s_u,s_v) \equiv s_w^2 \cdot \delta I^{(s)}(s_u,s_v)$$

Koopmans 2010

Power-spectrum Tomography

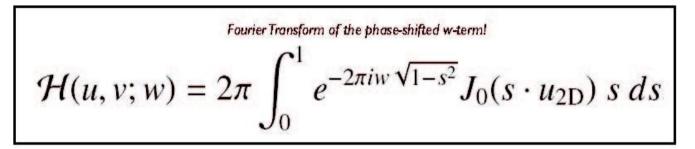
A spherical surface slice through an 3D intensity cylinder

$$J_{3\mathrm{D}}^{(i)}(\mathbf{s}_{0}) \equiv I_{3\mathrm{D}}^{(i)}(\mathbf{s}_{0}) \cdot \delta(s_{0,w} - \sqrt{1 - s_{0,u}^{2} - s_{0,v}})$$
Rescaled scattering as a 3D convolution
$$\delta J^{(s)}(s_{u}, s_{v}) = \iiint J_{3\mathrm{D}}^{(i)}(\mathbf{s}_{0}) |\tilde{\Phi}(\mathbf{s} - \mathbf{s}_{0})|^{2} d\mathbf{s}_{0}$$

Koopmans 2010

Power-spectrum Tomography

Using the Hankel Transform



one can show that the power-spectrum can be extracted from a model intensity and the scattered intensity

FT of sky residuals divided by FT of the sky model multiplied with a phase-shifted w-term!
$$|\tilde{\Phi}(\mathbf{s})|^2 = \mathcal{F}^{-1} \left[\frac{\delta \tilde{J}^{(s)}(u,v)}{\tilde{I}^{(i)}(u,v) \otimes \mathcal{H}(u,v;w)} \right]$$

Note that the 3D power-spectrum is build up from interference of different w-slices

Koopmans 2010

Summary

- Since we produce snapshots we can also correct them for image plane effects on the fly
- Currently implemented a station beam library
- Highly scalable

New methods of Imaging can be explored

Thank You