

Main beam representation in non-regular arrays

Christophe Craeye¹, David Gonzalez-Ovejero¹, Eloy de Lera Acedo², Nima Razavi Ghods², Paul Alexander²

¹Université catholique de Louvain, ICTEAM Institute ²University of Cambridge, Cavendish Laboratory CALIM 2011 Workshop, Manchester, July 25-29, 2011

Context: SKA AA-lo

Type of element

Bowtie

Spiral

Log-periodic

Non-regular: max effective area with min nb. elts w/o grating lobes.

CALIM 2011

Parameter	Specification
Low frequency	70 MHz
High frequency	450 MHz
Nyquist sampling frequency	100 MHz
Number of stations	50 => 250
Antennas per station	10.000

Problem statement

- **Goal:** pattern representation for all modes of operation at station level.
- Too many antennas vs. number of calibration sources
- Calibrate the main beam and first few sidelobes Suppress far inteferrers with interferometric methods (open).
- Compact representations of patterns, inspired from radiation from apertures. Expose problems related to mutual coupling

Outline

- 1. Apertures: continuous versus arrays
- 2. Array factors: series representations No MC
- 3. Convergence analysis
- 4. Mutual coupling: computation, issues and partial solutions

Aperture sampling (1)

Aperture sampling (2)

Aperture scanning (1)

Aperture scanning (2)

Patterns versus size of array

CALIM 2011

Aperture field representation

CALIM 2011

Zernike functions

Picture from Wikipedia

Polynomial	Fourier- Bessel	Zernike- Bessel
Fast functions	Good 1 st order	Good 1 st order
weaker at low orders	weak direct convergence	fast direct convergence

Array factor

with apodization

Array factor

CALIM 2011

Approximate array factor extracted

20 % error on amplitudes $\lambda/4$ error on positions (at 300 MHz)

Density function

The number of terms tells the "resolution" with which density is observed CALIM 2011

Errors versus number of terms for Fourier-Bessel (–), Zernike (-) and polynomial without "fundamental" (-.) approaches.

Effects of mutual coupling

 $\vec{F}_{arr} \neq F \ \vec{F}_{elt} \ !!!$

Isolated element pattern

To get voltages in uncoupled case: multiply voltage vector to the left by matrix

CALIM 2011

After correction, we are back to original problem, with (zoomable, shiftable) array factor

Gupta, I., and A. Ksienski (1983), Effect of mutual coupling on the performance of adaptive arrays, IEEE Trans. Antennas Propag., 31(5), 785–791.

Minimum-scattering antenna

Mutual coupling correction

Half-wave dipole

Mutual coupling correction

Bowtie antenna

l=1.2 m, λ=3.5 m

3.5

Mutual coupling correction

Bowtie antenna

l=1.2 m, λ=1.5 m

CALIM 2011

Multiple-mode approach

Macro Basis Functions

(Suter & Mosig, MOTL, 2000, cf. also Vecchi, Mittra, Maaskant,...)

MBF interactions (1)

MBF interactions (2)

MBF interactions (1)

MBF interactions (2)

CALIM 2011

MBF interactions (3)

MBF interactions (4)

Comp. time indep. from complexity of antenna !!!

CALIM⁴³**2011**

Example array

- Distance to ground plane = $\lambda_0/4$.
- No dielectric.

- Array radius = $30\lambda_0$. - Number of elements = 1000.

Random arrangement

Random configuration

Quasi-random arrangement

CALIM 2011

47

What's the problem ?

- No problem with **"smoothness"** of first few lobes, in view of **finiteness** of the "aperture"
- The challenge: can we simply "**shift**" **the array factor** upon scanning ? Strictly speaking, no because **variable** embedded patterns need for **several** array factors

(too many coefficients).

Search for simple approximate solution, like average embedded element pattern.

Conclusions

- 1. Near main beam: array ~ smooth aperture
- 2. Aperture distributions with close-form F.T.
- 3. Exponential convergence extraction of approximate array
- 4. Mutual coupling:
 - Evaluate average element pattern concept:

Which calibration dynamic range can be achieved for given array size ?

 Proceed with efforts on more compact representations

