

Beam Quality and Stability of PAF Systems

Stefan J. Wijnholds e-mail: wijnholds@astron.nl

SKA Calibration & Imaging Workshop Manchester (UK), 25 July 2011

The ideal polarimetric beamformer should

- provide maximum sensitivity
- preserve polarimetric properties of observed signal
- \rightarrow optimal beamformer

Other concerns (a.o.)

- polarimetric behavior over FoV
- side lobe level
- beam symmetry

\rightarrow beam shaping using constraints

With orthogonally polarized far field reference sources

- optimal
- max-SNR (signal-to-noise)
- max-SLNR (signal-to-leakage-and-noise)
- correction for imperfect reference sources

With unpolarized far field reference source

- eigenvector method (with bi-scalar correction)
- bi-scalar

Green: sensitivity equivalent to optimal method

Generic model of a phased array Ivashina, Maaskant & Woestenburg, IEEE AWPL, 2008 Ivashina et al., IEEE TAP, Jun 2011

CalIm, Manchester (UK), 25 July 2011

- 4 -

Optimal polarimetric calibration (1) Warnick et al., IEEE TAP, accepted 2011

$$\mathbf{v}_{u}, \mathbf{v}_{v}$$
 voltage response to pure *u*- or *v*-polarized signal

Assume: $\mathbf{V} = [\mathbf{v}_{\mu}, \mathbf{v}_{\nu}]$ is known

BF output covariance matrix: $\mathbf{W}^{H}(\mathbf{R}_{s} + \mathbf{R}_{n})$ W

where $\mathbf{W} = [\mathbf{w}_1, \mathbf{w}_2]$

 $\boldsymbol{\mathsf{R}}_{_{\scriptscriptstyle \mathsf{C}}}$ is the signal covariance matrix

R_n is the noise covariance matrix

We want to: 1. minimize the noise: $\operatorname{argmin}_{W} \operatorname{tr}(W^{H} \mathbb{R}_{P} W)$

2. preserve polarization: $\mathbf{W}^{H}\mathbf{V} = \mathbf{I}$

CalIm, Manchester (UK), 25 July 2011

Steps to solution

- Reformulate using Lagrange multipliers
- Take derivatives and set them to zero
- Use contraint to find Lagrange multipliers

Solution

$$\mathbf{W} = \mathbf{R}_{n}^{-1} \mathbf{V} (\mathbf{V}^{H} \mathbf{R}_{n}^{-1} \mathbf{V})^{-1}$$

Interpretation

- Maximum sensitivity beam former
- Correction for optimal polarimetric fidelity

CalIm, Manchester (UK), 25 July 2011

AST(RON

Optimal method requires

- generally unavailable orthogonally polarized ref. sources
- polarimetric processing (incl. 2N frontend correlator)
- \rightarrow practical systems exploit bi-scalar processing
 - separate treatment of both polarizations
 - reduces complexity of processing system
 - relies on intrinsic polarimetric quality of antennas
 - possibly sacrifices some sensitivity

Question: how bad is this?

Example: Aperture Tile in Focus

PAF for WSRT, increases survey speed 25x

key specs •

Frequency range 300 MHz Instantaneous bandwidth < 55 K System temperature Aperture efficiency Polarization Simultaneous beams Field of view Reflectors

1000 – 1750 MHz

75% dual linear 37 dual pol 8 deg^2 12 x 25 m

Beam spec: 1% error at HPBW rel. to main beam

Filling the FoV Ivashina et al., URSI GASS, Aug 2011

EM-simulation of APERTIF prototype for 37 beams

left: compound beams in x-polarization

right: beam center locations with indices

Sensitivity comparison Wijnholds et al., URSI GASS, Aug 2011

- AST(RON
- EM-simulation of APERTIF prototype for 37 pointings
- Sensitivity loss only 4%
- Recoverable at cost of half the bandwidth

CalIm, Manchester (UK), 25 July 2011

AST(RON

left: correlation BF output signals for optimal BF

right: correlation BF output signals for bi-scalar BF

Bi-scalar method relies on polarimetric quality of antennas

Measured dominant eigenvectors Wijnholds et al., URSI GASS, Aug 2011

- measurement on unpolarized source
- amplitudes of elements of two dominant eigenvectors
- 2% sensitivity loss due to ignoring cross-pol (4% in sims)
- -28 dB cross-pol level (sims typically -45 dB)
- acceptable for actual system

CalIm, Manchester (UK), 25 July 2011

Error analysis

- Beamformer equation: $y(t) = \mathbf{w}^{H}(\mathbf{\theta}) \mathbf{v}(t)$
 - $\mathbf{w}^{H}(\mathbf{\theta})$ weight vectors parameterized by $\mathbf{\theta}$
 - $\mathbf{v}(t)$ receiving element output voltages
 - y(t) beamformer output voltage
- $\boldsymbol{\theta}$ depends on element response and noise covariance
- assumed parameter covariance models:
 - for calibration: Cramer-Rao bound
 - for drift: independent parameter variation
- standard error propagation formula

 $var(y) = (\partial y / \partial \boldsymbol{\theta}^{\mathsf{T}}) \operatorname{cov}(\boldsymbol{\theta}) (\partial y / \partial \boldsymbol{\theta}^{\mathsf{T}})^{\mathsf{T}}$

Propagation of calibration errors

- SNR = 200
- bi-scalar BF
- constraint:
 beam peak
 fixed (selfcal)
- SNR of 200
 needed to
 satisfy beam
 requirement
 for APERTIF

Propagation of drift errors (on axis) AST(RON

- 2% rel. error
- bi-scalar BF
- constraint:
 beam peak
 fixed (selfcal)
- 2% variations
 well within acceptable tolerances

standard deviation

x 10⁻³

Element patterns on the sky Van Cappellen, AJDI, 27 Mar 2008

CalIm, Manchester (UK), 25 July 2011

Propagation of drift errors (off axis) AST(RON

- 2% rel. error
- bi-scalar BF
- constraint:
 beam peak
 fixed (selfcal)

max 2%
 variation

 acceptable to
 satisfy beam
 spec APERTIF

standard deviation

-3

x 10⁻³

Measured drift using apex-source

- 5 min observation at 1441.5 MHz
- gain calibrated using first 10 s
- < 1% variation after 5 min \rightarrow 10 15 min update rate?

CalIm, Manchester (UK), 25 July 2011

- Good progress on PAF analysis
 - sims and measurements give similar results
 - wide range of calibration methods available
 - comparison between methods possible
 - error propagation analysis available
- Application to APERTIF system
 - only 2% (sims: 4%) sensitivity loss bi-scalar BF
 - -28 dB cross-pol level bi-scalar BF acceptable
 - calibration measurement should have SNR of 200

- 10 - 15 min calibration update interval seems ok CalIm, Manchester (UK), 25 July 2011 - 19 -