AST (RON

RF over Fibre Solutions for the SKA

Peter Maat – ASTRON

AST(RON

- Analog Optical Link Technology for the SKA
- Interfaces
- Functional Requirements
- Design concept
- Impact of extensibility to SKA2
- Cost and Power
- Plan

ASTRON Analog Optical Link Technology for the SKA

Analog Optical Link Application Area:

- Aperture Array Tile Connection
- PAF / SPF Connection
- PAF Antenna Element Connection

Why Photonic Technology?

- Broadband / High Frequency
- Immunity for RFI
- Light Weight
- Small Space Envelope

ASTRON Analog Optical Link Technology for the SKA

Interfaces

ASTRO

Functional Requirements

Available Documentation:

- Requirements Document for Signal Transport and Networks
- Requirements Document for Antenna Networks

Most important RF system requirements

- Electromagnetic Frequency Range from 70 MHz to 3 GHz.
- Spectral dynamic range
 - ≥61 dB in the band 70MHz to 240 MHz
 - ≥43 dB in the band 200 MHz to 1.4 GHz
- Noise Figure shall be no greater than 6 dB.
- Other important requirements concern stability, flatness and link functionality

Design Concept

Design Concept

ASTRON

• External Modulation: Dynamic Range

119

	Noise lovel	1 Hz		1 GHz	
Optical power at detector	Noise level	IMF3	RFin	IMF3	RFin
(dBm)	(dBm/Hz)	(dB)	(dBm)	(dB)	(dBm)
4.7	-168.5	107.49	-31.06	47.49	-10.9
6.7	-166.8	110.68	-31.65	50.68	-11.35
8.7	-164.9	112.52	-32.65	52.52	-12.45
12.3	-160.8	113.22	-34.85	53.22	-14.45

$$\rightarrow$$
 IMF3 = $\frac{2}{3} \cdot (\text{OIP3} - \text{P}_{\text{noise}})$

E

AOL technology for SKA2

- Application of AOL technology in PAF antenna element connections
 - Cost level reduction via:

ASTRON

- RF/Photonic integration
- Array technology

Modulator array with RF interconnects

AOL technology for SKA2

Application of AOL technology and photonic signal processing

ASTRON

Photonic receiver tile with AOLs and photonic beamformer

- True time delay beamformer
- 16 receiver system
- 500 MHZ 1.5 GHz

Cost and Power

• EM AOL system cost: 3293 Euro / Power: 8.8 W

ASTRON

Component	Туре	Subsection	Voltage	Current	Power	Comment
			(V)	(A)	(W)	
CW Laser	EM4, AA1406					
		Laser Chip	1.2	0.55	0,66	
		TEC	< 5	< 1.5	7.5	
		Thermistor	< 5	< 0.0005	< 0.0025	
Modulator	Photline, MXAN LN10					
		Modulator Chip	< 20	< 0.0002	< 0.0004	
		Monitor Diode	< 5	< 0.0035	< 0.02	
Detector	Agere, R2560A		15	< 0.013	0	
RF amplifier	MGA-53543		5	0.05	0.1	Two amplifiers are needed

DM AOL system cost: 255 Euro / Power: 0.62 W

Component	Туре	Subsection	Voltage	Current	Power	Comment
			(∨)	(A)	(W)	
Laser	LDM1550		1	0.02	0.02	
Detector	PD-50		3	0.001	0	
RF amplifier	MGA-53543		5	0.06	0.3	Two amplifiers are needed

AST(RON

- Apply lower cost components and lower cost AOL technology
- Development of low cost array technology
- Development of low cost RF/Photonic integration technology
- Investigation of phase and amplitude stability in a field test
- Development of higher bandwidth (10 GHz) AOL technology

Plan

AST (RON