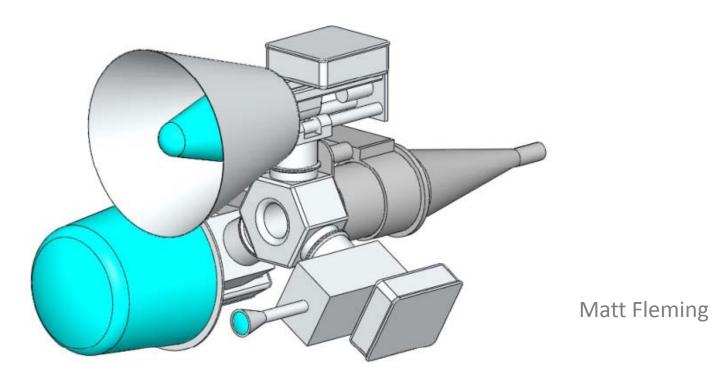


Introduction to single pixel feed payloads

Dish Array hierarchy

 SPF payloads comprise feed (including OMT if needed), LNAs, cryogenics (if needed) and packaging (dewar or other housing)



Exploring the Universe with the world's largest radio telescope

SPF feed payloads

• This shows one concept to accommodate multiple feed payloads on a 'feed indexer'

Exploring the Universe with the world's largest radio telescope

Dish Array: key functional requirements (1)

- The SKA1 sensitivity requirement is 1000 m²K⁻¹ in the range 0.45 to 3 GHz.
- The SSEC baseline for SKA1 calls for 250 dishes equipped with octave band feeds to meet this requirement. 3 feed payloads per dish will be needed.
- This is based on an assumed Tsys of 30 K and aperture efficiency of 70 %.
- SKA2 is expected to require 10,000 m²K⁻¹

Dish Array: key functional requirements (2)

- Excellent beam and sidelobe stability, and excellent phase and amplitude stability will be necessary to meet dynamic range requirements. Also stable and repeatable polarization.
- SPF feed payload performance will substantially influence the Dish Array performance.

Dish Array: key non-functional requirements (1)

- 'The Phase 1 Dish Array shall be designed for a continuous operational period of at least 12 months, without the need for planned maintenance.'
- Feed payloads will need to be extremely reliable, and designed for minimal maintenance: preferably no routine maintenance. This is a challenge for the cryogenics.
- Failure to produce sufficiently reliable lowmaintenance cryogenics will result in enormous operating costs and loss of science output.

Dish Array: key non-functional requirements (2)

- 'The Phase 1 Dish Array shall be upgradable.'
- SPF payloads will be modular sub systems with well-defined interfaces.
- Rapid upgrades will be possible by addition or replacement of SPF payloads.
- This will aid the transition from SKA1 to SKA2.

System costs

- Capital cost of SPF payloads will be low compared to dish cost.
- Operating costs will be substantial:
 - Power consumption (especially cryogenics)
 - Maintenance (especially cryogenics)
- Low sensitivity = higher system cost
 - If effective area is low and/or system noise temperature is high then more dishes will be needed to meet system sensitivity requirements: this also means more signal transport, more signal processing, more computing, more power.
- SPF payload design is critical to SKA system cost