

WP2.2 CoDR PAF Concepts

Stuart Hay and Bruce Veidt PAFSKA WP2.2.3

PAF sub-system review

Optics/antenna considerations

- 1. f/D
- 2. FoV de-rotation
- 3. Reflector shaping

f/D

- Moderate f/D \sim 0.4-0.5 is important to minimizing PAF cost
 - Number of PAF elements α (f/D)² for given FoV
 - Good aperture efficiency
- Consistent with Pathfinder and PrepSKA dish activities
 - Front-fed single reflector
 - Offset-fed dual reflector
- Can be difficult to achieve with small blockage in other configurations

Exploring the Universe with the world's largest radio telescope

ASKAP

- For high dynamic range, beams must be stable wrt sources whilst integrating in the visibility domain
- Difficult to resolve in image formation
 - Calibration, storage and processing
- Altaz mount + 3rd axis to rotate reflector and feed (eg ASKAP)
- Equatorial mounts (eg WRST)
 - Latitude dependent SKA
- Altaz with electronic beam scan whilst maintaining beam shape

FoV de-rotation

- Front-fed single reflector
 - 3rd axis has been done (ASKAP)
- Offset-fed dual reflector
 - 3rd axis is more difficult
 - Electronic beam scan
 - tertiary pattern must retain shape
 - primary and secondary spillover will rotate wrt sources, so must be small

Reflector shaping and survey speed

average(
$$\sum_{\text{pointings}} \operatorname{Sen}_{x,y}^{2}(\Omega - \Omega_{\text{pointing}})) = \frac{1}{\partial \Omega} \int_{all \Omega} d\Omega \operatorname{Sen}_{x,y}^{2}(\Omega)$$

$$\Rightarrow$$
 Survey speed $\propto \int_{all \Omega} d\Omega \operatorname{Sen}^2(\Omega)$

Reflector shaping

DSEx SSFOV=32.8 deg² S_{max}=2.68 m²/K S²_{eff}=237 DSEx SSFOV=15.6 deg² S_{max}=3.11 m²/K S²_{eff}=150 deg² m⁴/K² 3FOV=21 deg² S_{max}=2.66 m²/K S²_{eff}=148 deg² m⁴/K²

Optics/antenna summary

- Optics/antennas is important
 - Survey speed / cost
 - Achieving high dynamic range
 - Upgradability of SKA
- Particular concerns
 - FoV rotation impact on dynamic range
 - Unshaped reflectors preferred for performance/cost and future FoV expansion

PAF Feed Array Concepts

Chequerboard

Vivaldi

Dipole

Chequerboard PAF overview

- Connected array concept
 - Bandwidth enhanced by flow of conduction current between elements
- Dual-polarized self-complementary patches over groundplane
 - Moderately wideband 2.5:1
 - ~377ohm active impedance
- Potential advantages of planar structure •
 - Integration with low noise amplifiers
 - Cost
 - Other performance aspects eg polarization

Chequerboard PAF construction

Chequerboard PAF active balun

Patch

Chequerboard PAF LNA design

- Discrete components
- Avago ATF 35143 PHEMT FETs
- ~300 ohm differential input Zin and noise source Zopt
- Stable on the array
- Noise parameter estimation from measurements (1/2 and full LNA)

Chequerboard PAF Trec

- Array modelling
 - Consistent with recent measurements on first 188-element ASKAP PAF
 - LNA noise parameters estimated from measurements
 - Enhanced chequerboard (ASKAP 2 above) with same LNA

Vivaldi PAF

- Vivaldi array
 - Well characterized element
 - Easy design for 2.5:1 bandwidth
 - Easy design for 50ohm single-ended LNAs
 - High technology readiness level
- Eg APERTIF
 - 121 element dual polarized Vivaldi array, 1 1.8 GHz
 - Laser-cut aluminum plates
 - Microstrip balun on RO4003
 - Overall radiation efficiency ~98.5%
 - Temperature stabilized at 7 °C

VII OMETOE ADDI

10 cm

APERTIF LNA

Room temperature LNA Tmin ~35 K Discrete components

Improved design with Tmin~25K has been prototyped

APERTIF PAF

Aperture array

- Tsys ~50K as aperture array and 68K as PAF (nap=75K)
- Good agreement between modeling and measurement
- Tsys ~ 55K expected for final APERTIF PAF

Active Vivaldi PAF

- DRAO/UCL effort aimed at reducing Vivaldi loss ٠
- Thicker Vivaldi elements (5mm) ٠
- LNA integrated in element (milled cavity) ٠
- **Reduce dielectric** ٠
- Use of Tmin 20K single-ended LNAs ٠

	Current Prototype	Final APERTIF
Antenna losses	6	6
LNA + second stage	40	28
Noise coupling / active impedance	9	8
Spillover	10	10
Sky noise	3	3
Total	68	55

APERTIF Tsys budget at 1.4GHz Exploring the Universe with the world's largest radio telescope

Dipole PAF

- BYU/NRAO collaboration
- Dual-polarized `Kite' dipole
- Well characterized element
- Tsys 22K target (35K has been measured)
- ηap 70%
- 1.4:1 bandwidth (1dB)

Dipole PAF LNAs

- LNAs in cryostat (stainless steel transition to ambient dipole)
- Single-ended LNAs (balun in dipole) with 50ohm impedance
- Optimized active noise match

Fully cooled PAFs

- Cornell study
- Dipoles and LNA cryogenically cooled by two-stage system
- Thermal load modeling
- 91 element 1.4m dia PAF for Arecibo would require 4 CTI1020 coolers

Conclusions

- PAF principles and capability demonstrated
 - Modelling
 - Low noise ambient temperature LNAs
 - Dense arrays
 - Cryogenic cooling
 - SKA1 0.45-3GHz could be covered with two PAFs
 - Emerging flexible new technology for radioastronomy
- PAF optimization
 - Optimizations required in FOV, optics, frequency range, processing
- PAF key issues
 - Dynamic range budget
 - Astronomy/cost optimization

CSIRO ICT Centre

Stuart Hay Research Team Leader - Electromagnetics

Phone: +61 2 9372 4288 Email: Stuart.Hay@csiro.au Web: www.csiro.au/group

Contact Us Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

Exploring the Universe with the world's largest rad

