

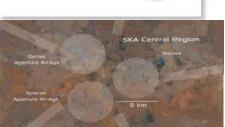
Science Requirements for the SKA Dish Sub-system Joseph Lazio (SPDO; Jet Propulsion Laboratory, California Institute of Technology) & Minh Huynh (SPDO; International Centre for Radio Astronomy Research)

© 2011 California Institute of Technology. Government sponsorship acknowledged.

Headline Title Here

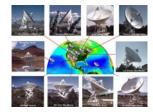
- Bullet point text here, bullet point text here, bullet point
- Bullet point text here, bullet point text here, bullet point
- Bullet point text here, bullet point text here, bullet point
- Bullet point text here, bullet point text here, bullet point
- Bullet point text here, bullet point text here, bullet point
- Bullet point text here, bullet point text here, bullet point
- Bullet point text here, bullet point text here, bullet point

Square Kilometre Array


The Global Radio Wavelength Observatory

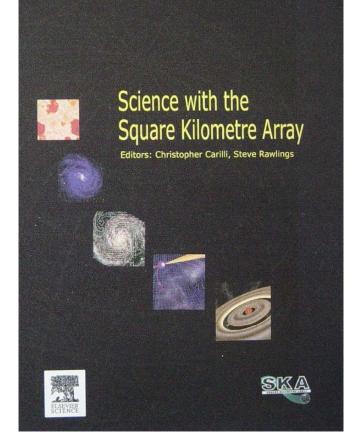
- Originally: "Hydrogen telescope"
 Detect H I 21-cm emission from Milky Way-like galaxy at z ~ 1
- SKA science much broader
 ⇒ Multi-wavelength, multimessenger
- On-going technical development
 ⇒Importantly in the Dish Sub-system
- International involvement

Dishes and SKA Pathfinding


Radio astronomy has been making use of dishes for a **long** time

- Experience leads to high expectations
- Dish-based Precursors and many pathfinders in existence or under construction

Provide valuable experience


SKA Key Science

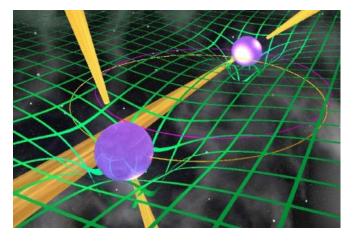
International working group

- Strong-field Tests of Gravity with Pulsars and Black Holes
- Galaxy Evolution, Cosmology, & Dark Energy
- Emerging from the Dark Ages
- The Cradle of Life & Astrobiology
- The Origin and Evolution of Cosmic Magnetism

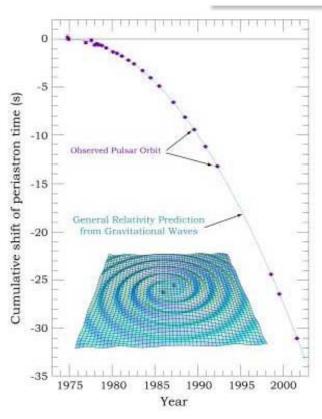
With design philosophy of *Exploration* of the Unknown

Science with the Square Kilometre Array (2004, eds. Carilli & Rawlings, New Astron. Rev., **48**)

Key Science and Key Technology



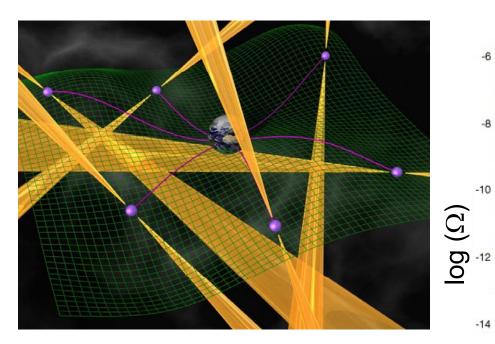
Key Science	Dishes in Phase 1	Dishes in Phase 2
Strong-field Tests of Gravity with Pulsars and Black Holes	V	~
Galaxy Evolution, Cosmology, & Dark Energy	V	
Emerging from the Dark Ages	?	 ✓
The Cradle of Life & Astrobiology	?	 ✓
The Origin and Evolution of Cosmic Magnetism	V	 ✓


Some aspect of all Key Science Programs will require a dish array sub-system to address.

Did Einstein Have the Last Word on Gravity?

- Relativistic binaries probe
 - Equivalence principle
 - Strong-field tests of gravity
- Only neutron star-neutron star binaries known
 - Black hole-neutron star binaries?

Orbital decay of PSR B1913+16 (Weisberg and Taylor 2003)


SKA as a Gravitational Wave Detector

Advanced LIGO

> Extended Inflation

0.9K Blackbody Spectrum

Test masses on lever arm

- Pulsar Timing Array = freely-falling millisecond pulsars
- LIGO = suspended mirrors
- LISA = freely-falling masses in space

Exploring the Universe with the world's largest radio telescope

Curren

SKA-PTA

Slow-roll inflation - Upper Bound

-5

Inflation $\alpha = 2$

-10

MBHMBH Binaries

Global strings

COBE

CMB-POL

Inflation $\alpha = 80$

-15

-8

-10

-14

-16

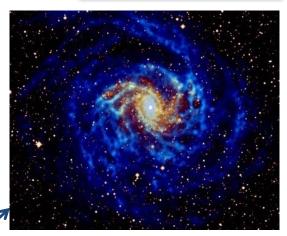
LISA

FW Phase

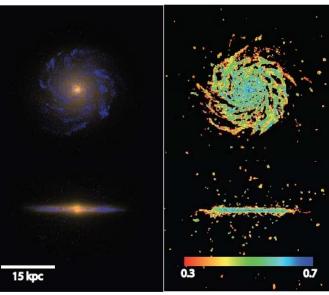
Transition

0

 $\log (f/Hz)$

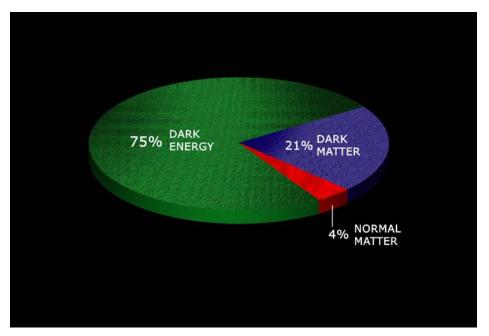

5

10


Galaxy Assembly Stars and Gas

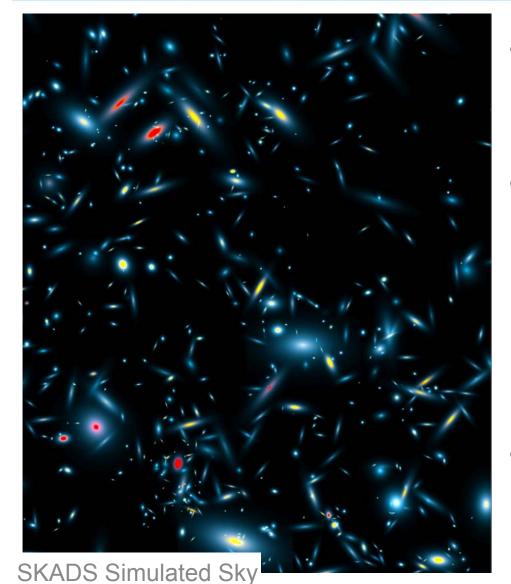
- Neutral hydrogen (HI) is the raw material for galaxies and star formation
 - How do galaxies turn gas into stars?
 - How does gas content vary with
 - Morphology;
 - Redshift;
 - Environment/Mergers;
 - ...
- Gas content and dynamics becoming critical part of simulations.
 - Astronomy is an *observational* science.

observation vs. simulation


Eris simulation (Guedes et al.) NGC 6946 (T. Oosterloo)

Cosmology and Gravity

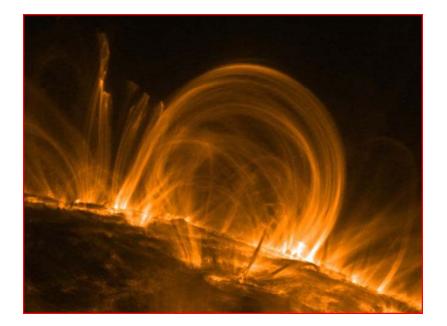
$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu} / c^4$$


- Origin and Fate of the Universe
- Era of "precision cosmology" ... or precision ignorance
- Need to sample a substantial volume of the Universe

Composition of the Universe

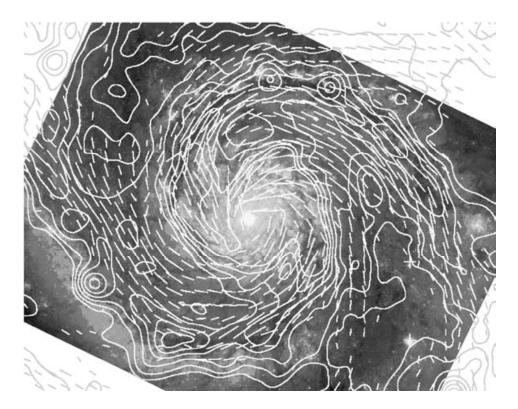
Cosmology and Sky Surveys

- Image the sky, locating galaxies
 Analysis of locations compared with cosmological models to constrain parameters
- Two broad classes of surveys
 - Continuum: e.g., NVSS, FIRST, ASKAP/EMU, WSRT/APERTIF/WODAN
 - Spectroscopic: SDSS, Arecibo ALFALFA, ASKAP/WALLABY, SKA H I survey


Spectroscopic surveys locate in 3-D space! very powerful

Ultimate goal: spectroscopic survey of 1 billion galaxies

Cosmic Magnetism


- Fills intergalactic and interstellar space
- Essential for the onset of star formation
- Controls the density and distribution of cosmic rays in the interstellar medium (ISM)
- Affects the evolution of galaxies and galaxy clusters

Cosmic Magnetism

- How are magnetic fields generated and maintained?
- How do magnetic fields evolve as galaxies evolve?
- What is the strength and structure of the magnetic field of the intergalactic medium (IGM)
- Are magnetic fields in galaxies and clusters primordial or generated at later epochs?

Key Science and Key Technology

Key Science	Dishes in Phase 1	Dishes in Phase 2
Strong-field Tests of Gravity with Pulsars and Black Holes	~	~
Galaxy Evolution, Cosmology, & Dark Energy	V	
Emerging from the Dark Ages	?	 ✓
The Cradle of Life & Astrobiology	?	 ✓
The Origin and Evolution of Cosmic Magnetism	V	 ✓

Some aspect of all Key Science Programs will require a dish array sub-system to address.

BLUF (Bottom Line, Up Front)

SKA has to beat current performance by a sufficient margin.

Pulsar Timing

Telescope	Sensitivity (m ² K ⁻¹)
Parkes	65
Arecibo	830
GBT / EVLA / GMRT	~ 250
MeerKAT	155
FAST	1250
Phase 1	1000

* Both metrics really should include the processed bandwidth

H | Surveys

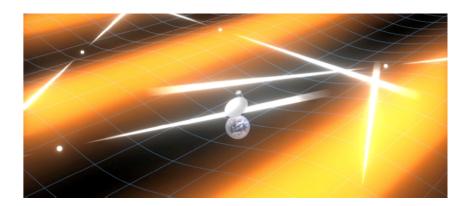
Telescope	Survey Speed @ 1 GHz (10 ⁴ m ⁴ K ⁻² deg ²)
AO/ALFA	4.7
WRST/APERTIF	7.4
ASKAP	13
FAST	22
A040	20
GBT-PAF	6.4
Phase 1 (core)	37
Phase 1 (core+inner)	52

Scientific and Technical Requirements

- Sensitivity and survey speed
- Spectral characteristics
- Temporal characteristics
- Polarization characteristics
- Imaging characteristics
- Operational requirements
- See Requirements Document for SKA Dish Array (WP2-020.030.020-RS-001)

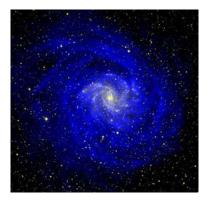
ARE KILOMETRE ARRA

Technical Requirement Sensitivity



Please, sir, I want some more.

Fundamental Physics via Pulsar Timing


Precise measurements of arrival times of pulsars can track changes in pulsar-Earth distance

> Pulsars are faint, e.g., 0.1 mJy kpc²

Galaxy Evolution

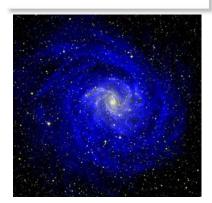
Track how gas flows into, out of, and within galaxies as a function of cosmic time Milky Way-like galaxy at $z \sim 2$ is 0.4 mJy in 200 km s⁻¹ velocity channel

Technical Requirement Survey Speed

Please, sir, I want some more.

- Survey speed figure of merit (SSFoM) = $(A_{eff}/T_{sys})^2 \Delta \Omega \Delta v$
- Strictly, the "steady source" SSFoM
- Bandwidth not usually included, but important

Does one have to cover the sky twice for surveys of the H I line?


 Potentially more of a consideration for Phase 2 than Phase 1

Key Science and Key Technology

"Hydrogen telescope": Detect H I 21-cm emission from Milky Way-like galaxy at *z* ~ 1

A _{eff} /T _{sys}		
20,000 m ² K ⁻¹	SKA Science Case (Carilli & Rawlings 2004)	
7000 – 12,000 m ² K ⁻¹	Preliminary Specifications for the SKA, SKA Memo 100 (Schilizzi et al. 2007)	
1000 m ² K ⁻¹	SKA Phase 1: Preliminary System Description, SKA Memo 130 (Dewdney et al. 2010)	

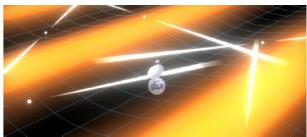
Technical Requirement Spectral Characteristics

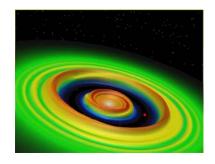
Frequency range

 H I line (1420 MHz) over redshift range 0 ≤ z ≤ 3 (or 7)

At least 0.45 GHz–1.42 GHz


- Pulsar timing balances decreasing flux densities at higher frequencies and increasing propagation effects at lower frequencies.
 Notionally 0.8–3 GHz
- Cradle of Life exploits v² dependence of thermal emission


Above 5 GHz (to 25+ GHz)

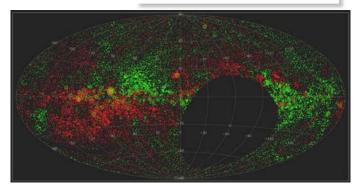

Later stages of Phase 1 into Phase 2

Current radio astronomy dishes operate over at least 10:1, in some cases 100:1 frequency range

Technical Requirements Temporal Characteristics

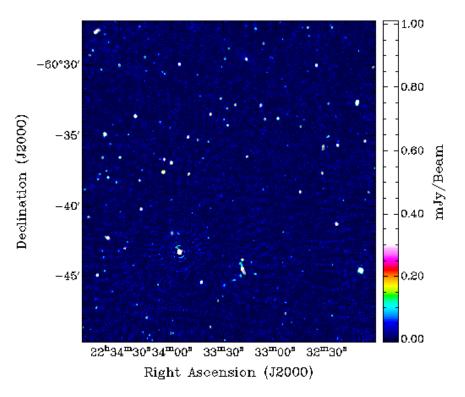
- Range of astronomical time scales is vast
 - Sub-millisecond pulse widths from millisecond pulsars
 - Hour-long variations in pulsar flux densities due to interstellar propagation effects
 - Month-long variations in extragalactic source flux densities due to interstellar propagation effects and in morphology of X-ray binaries due to jet formation and evolution
 - Decade-long changes in pulsar and black hole positions on the sky due to space motions

— . . .


- Range of observationally-related time scale considerations is long
 - Minute (sub-minute?) time scales due to atmospheric changes (both neutral and ionized)
 - Daily variations due to thermal loading, elevation changes, ...
 - Yearly variations due to seasonal effects
 - Monthly to multi-year observational campaigns for deep fields and surveys
 - 1000 hr (3 Ms) deep field
 - 2 year "on-sky" survey time, which does not include calibration or observational overheads

Technical Requirements Polarization Characteristics

- Wide range of angular scales required
 - ~ 10" for probing structures within the Galaxy (e.g., molecular clouds)
 - ~ 1' for probing galaxies, maybe clusters of galaxies
 - $\sim 1^{\circ}$ for clusters of galaxies
 - All-sky for Galaxy
- Polarization characteristics should be *calibratible* over the field of view



Technical Requirements Imaging Characteristics

Imaging performance is a *System* requirement, from which Dish requirements are derived.

- Science motivations
 - Star formation in high redshift galaxies
 - Dust enshrouded star forming galaxies at z ~ 3
 - Faint Galactic transients
 - Discovery
 - i.e., want to be able to use the telescope to the full range of implied capabilities
- Imaging Dynamic Range = 74 dB
 - Deep observations of selected fields, e.g., young galaxies at z ~ 7 (Phase 2 DRM)
 - All-sky imaging requirements significantly less severe

Australia Telescope Hubble Deep Field South field (~ 10 µJy/beam rms)

Technical Requirements Operational Considerations

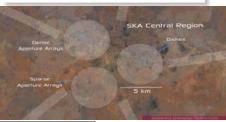
- Observational programs
 - 1000 hr deep fields
 - Multi-year surveys
- Large MTBF Of all components!
- Extensibility to Phase 2, notably future feed+Rx systems
 Wider bandwidth systems, different center frequencies, PAFs, ...
- Multi-decade operational lifetime (~ 50 yr)

Square Kilometre Array

The Global Radio Wavelength Observatory

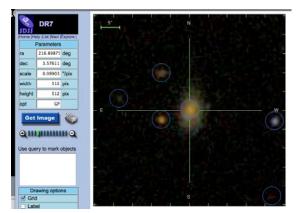
Originally: "Hydrogen telescope"

Detect H I 21-cm emission from Milky Way-like galaxy at $z \sim 1$


- SKA science much broader
 ⇒ Multi-wavelength, multi
 - messenger
- On-going technical development
 - ⇒Dish Sub-system incredibly important!

H I Surveys

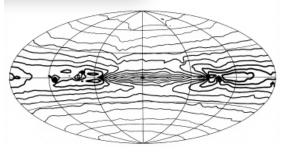
- Science: Understand evolution of H I mass function, search for dark halos, ...
- ALFALFA illustrating importance of "significant" volumes
- Technical parameter: Survey speed at 1 GHz
 Resolution not an important parameter, may be detrimental


Telescope	Survey Speed at 1 GHz (10 ⁴ m ⁴ K ⁻² deg ²)
AO/ALFA	4.7
WRST/APERTIF	7.4
ASKAP	13
FAST	22
AO40	20
GBT-PAF	6.4
Phase 1 (core)	37
Phase 1 (core+inner)	52

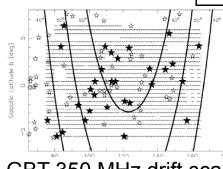
H I Deep Field

- Science: Track gas inflow to galaxies, galaxy interactions
- Target *z* ~ 0.3
- Resolution ~ 5"
 ~ 10 km baselines

Telescope	Sensitivity (m² K ⁻¹)
EVLA / GMRT	~ 250
MeerKAT (if spur exists)	155
Phase 1	619



SDSS J142735.69+033434.2


Pulsar Surveys I

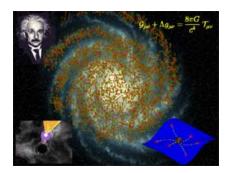
- Science: Find additional millisecond pulsars, e.g., for gravitational wave studies
- Goal: wide distribution of MSPs across sky
- Frequency ~ 400 MHz
 - Target high Galactic latitudes, so propagation effects less important
 - Exploit steep spectra of MSPs

MSP detection volume @ 430 MHz (Cordes &

GBT 350 MHz drift scan xploring the Universe with the world's largest radio telescope	
survey (Hessels et al.)	

Teles	cope	Survey Speed ~ 400 MHz (10 ⁴ m ⁴ K ⁻² deg ²)
AO		1.5
GBT		0.36
Parke	S	0.04
LOFA (core)	R-HBA	(small)
FAST		2.5
Phase	• 1 (core)	160
	FoV	y <mark>cannot</mark> be traded for on is bad -> higher

signal processing costs


Pulsar Surveys II

 Science: Ultra-relativistic binaries

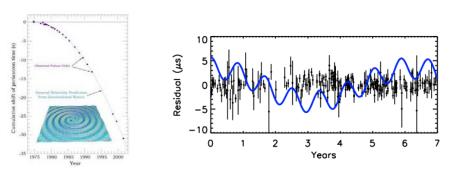
Likely requires surveys deep into Galactic plane

- Frequency ~ 1.4 GHz
 - Survey low Galactic latitudes
 - Balance typical pulsar spectrum with propagation effects

Telescope	Survey Speed ~ 1 GHz (10 ⁴ m ⁴ K ⁻² deg ²)
AO/ALFA	4.7
GBT	0.01
Parkes MB	0.65
WRST/APERTIF	7.4
ASKAP	13
FAST	22
AO40	20
GBT-PAF	6.4
Phase 1 (core)	37
 Sensitivity cannot be traded for FoV Resolution is bad -> higher signal processing costs 	

• Southern hemisphere location of SKA is Exploring the Universe with the world's largest radio telescope unparalleled

Pulsar Timing



- Science: Testing fundamental physics
 - Gravitation
 - Strong force
- Frequency ~ 1.4 GHz (or higher!)

Mitigate propagation effects

Field of view unimportant
 Probably only 1 "interesting"
 PSR in FoV

Telescope	Sensitivity (m ² K ⁻¹)
Parkes	65
Arecibo	830
GBT / EVLA / GMRT	~ 250
MeerKAT	155
FAST	1250
Phase 1	1000

