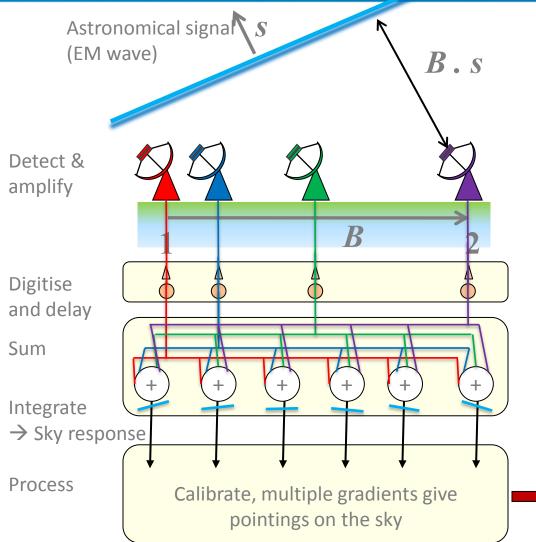


Flow of Data from Receptors to Archive

Standard interferometer


• Visibility:

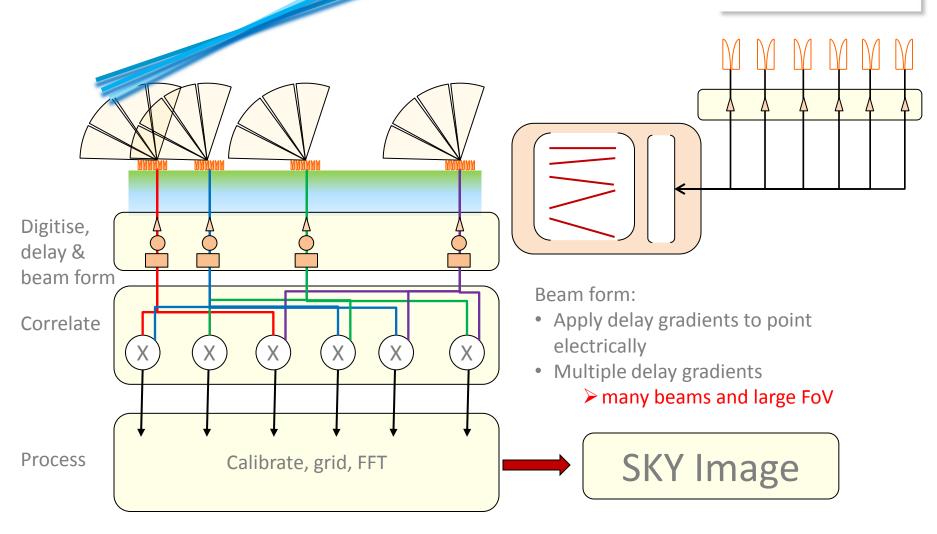
$$V(\mathbf{B}) = E_1 E_2^*$$

= $I(\mathbf{s}) \exp(i \omega \mathbf{B} \cdot \mathbf{s}/c)$

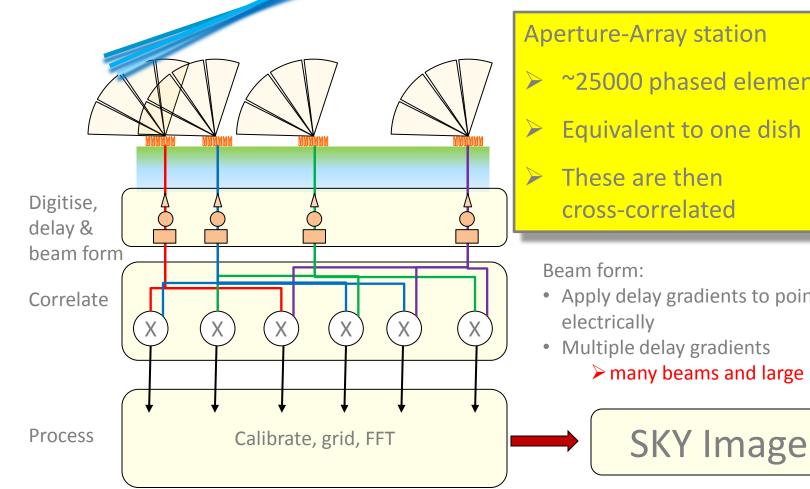
- Resolution determined by maximum baseline $\theta_{max} \sim \lambda / B_{max}$
- Field of View (FoV) determined by the size of each dish $\theta_{\rm dish} \sim \lambda \ / \ {\rm D}$

Beam forming

• Beamform:


$$V(\mathbf{B}) = E_1 + E_2 \exp(i \omega \mathbf{B}_2 \cdot s/c) + \dots$$

- Resolution determined by maximum baseline $\theta_{max} \sim \lambda \text{ / } B_{max}$
- Field of View (FoV) determined by the size of each dish $\theta_{\rm dish} \sim \lambda \ / \ {\rm D}$

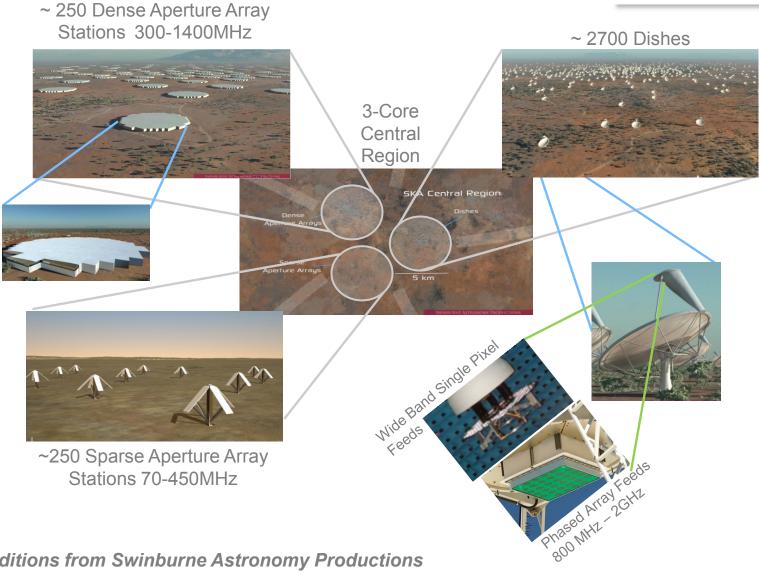

Aperture arrays

Aperture arrays



Aperture-Array station

- ~25000 phased elements
- Equivalent to one dish
- These are then cross-correlated


Beam form:

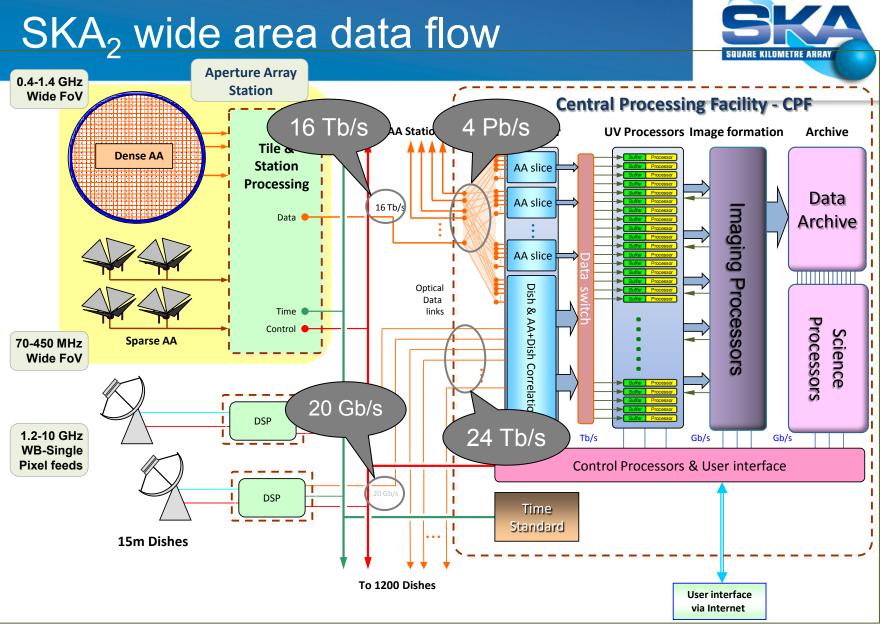
- Apply delay gradients to point electrically
- Multiple delay gradients many beams and large FoV

SKA2



Artist renditions from Swinburne Astronomy Productions

SKA1


Artist renditions from Swinburne Astronomy Productions

Data rates from receptors

- For all receptors
 - Assume we Nyquist sample each polarization
- For dishes with single pixel feeds data rate is just determined by the bandwidth
- For Aperture Arrays and Dishes with Phased Array Feeds the data rate is determined by:
 - Bandwidth times beams across the band
 - Driven by the requirements of Field of View from the science requirements
 - Beam form at the AA station, but cannot time average as we need to keep data coherent
 - Reduce data rate by producing fewer beams than individual antenna elements
- Can (in principle) trade bandwidth for field of view so the product is the fixed quantity

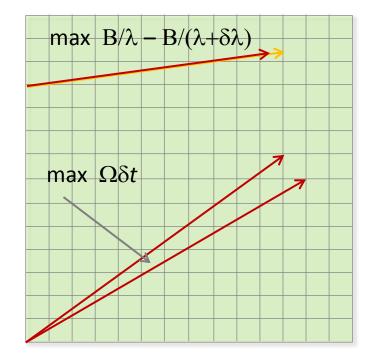
$$G_1 = 2N_p \Delta f N_{bit} N_b = 4\Delta f N_{bit} N_b$$

Exploring the Universe with the world's largest radio telescope

SKA1 Data rates from receptors

- Dishes
 - Depends on feeds, but illustrate by 2 GHz bandwidth at 8-bits
 - G = 64 Gb/s from each dish
- For Phased Array feeds increased by number of beams (~20)
 - G~1 Tb/s
- For Low frequency Aperture Arrays :
 - Bandwidth is 380 MHz
 - Driven by the requirements of Field of View from the science requirements which from DRM is 5 sq-degrees → 20 beams
 - G = 240 Gb/s
- These are from each collector into the correlator or beam former
 - 300 dishes
 - 285 75-m AA stations
 - G(total) ~ 68 Tb/s

Data rates from the correlator



- After correlation the data rate is fixed by straightforward considerations
 - > Must sample fast enough (limit on integration time) δt
 - \blacktriangleright Baseline \propto B/ λ
 - > UV (Fourier) cell size $\propto D/\lambda$

 $\Omega \delta t \frac{B}{\lambda} < \frac{1}{X} \frac{D}{\lambda}$

Must have small-enough channel width to avoid chromatic aberration

$$\delta\left(\frac{B}{\lambda}\right) < \frac{1}{X}\frac{D}{\lambda}$$

Data rates from the correlator

• Adopted results for integration/dump time and channel width

$$\frac{\delta t}{s} = a_t \frac{D}{B} \sim 1200 \frac{D}{B} \qquad \frac{\delta f}{f} = a_f \frac{D}{B} \sim \frac{1}{10} \frac{D}{B}$$

• Data rate then given by

$$G = g(B) \frac{1}{2} N^2 N_p^2 N_b \frac{1}{\delta t} \frac{\Delta f}{\delta f} 2N_w \qquad G = g(B) N^2 N_w N_p^2 N_b \frac{1}{a_t a_f} \left(\frac{B}{D}\right)^2$$

antennas # polarizations # beams word-length

 Can reduce this using baseline-dependent integration times and channel widths

Example correlator data rates and products SKA1

- Aperture Array Line experiment (e.g. EoR)
 - 5 sq degrees; 170000 channels over 250 MHz bandwidth
 - > ~ 30 GB/s reducing quickly to ~ 1GB/s
 - ➢ Up to 500 TB UV (Fourier) data; Images (3D) ~ 1.5 TB
- Continuum experiment with long baselines with the AA
 - 100 km baseline with the low-frequency AA
 - > 1.2 TB/s reducing to ~ 12.5 GB/s
 - Up to 250 TB/day to archive if we archive raw UV data
- Spectral-line imaging with dishes
 - Data rates ~ 50 GB/s; Images (3D) ~ 27 TB

Example beam-formed data rates SKA1

- Pulsar search
 - Galactic-plane survey for pulsars
 - ~ 400 GB/s to de-disperser (hardware?)
 - Data products are of small volume as all analysis is done in pseudo real-time.

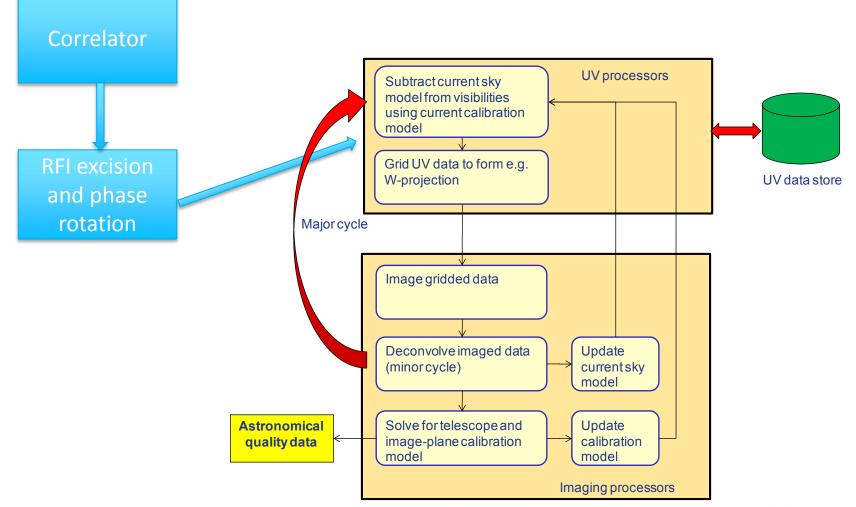
Example correlator data rates SKA2

Experiment				3000 Dishes + SPF		1630 Dishes + PAFS		250 AA stations	
Description	B _{max} (km)	Δf (MHz)	f _{max} (MHz)	Achieve d FoV ¹	Data rate (Tb/s)	Achieved FoV ¹	Data rate (Tb/s)	Achieved FoV ¹	Data rate (Tb/s)
Survey: High surface brightness continuum	5	700	1400	0.78	0.055	15	0.11	108	0.03
Survey: Nearby HI high res. 32000 channels	5	700	1400	0.78	1.0	15	2.0	108	2.6
Survey: Medium spectral resolution; resolved imaging (8000)	30	700	1400	0.78	1.2	15	2.4	108	5.4
Survey: Medium resolution continuum	180	700	1400	0.78	33.1	15	66	108	14.1
Pointed: Medium resolution continuum deep observation	180	700	1400	0.78	33.1			0.78	0.15
High resolution with station beam forming ²	1000	2000	8000	0.0015	33.4				
High resolution with station beam forming ³	1000	2000	8000	0.0015	429				
Highest resolution for deep imaging ²	3000	4000	10000	0.001	391				

Notes

- 1. Achieved FoV is at f_{max} and has units of degrees squared. For the AA and PAFs we calculate the data rate assuming it is constant across the band.
- 2. Assuming that for the dynamic range the FoV of the station only has to be imaged
- 3. Assuming that for the dynamic range the FoV of the dish must be imaged

Example Data Products SKA2


Experiment	T _{obs}	<i>B</i> /km	<i>D</i> /m	$N_{ m b}$	N _{ch}	$N_{ m v}$	Size /
							TB
High resolution spectral line	3600	200	15	1	32000	5 10 ¹³	200
Survey spectral line medium resolution	3600	30	56	1000	32000	8 10 ¹³	330
Snapshot continuum – some spectral information	60	180	56	1200	32	7 10 ¹²	30
High resolution long baseline	3600	3000	60	1	4	$7 \ 10^{14}$	360

- ~0.5 10 PB/day of image data
- Source count ~10⁶ sources per square degree
- ~10¹⁰ sources in the accessible SKA sky, 10⁴ numbers/record
- ~1 PB for the catalogued data

100 Pbytes – 3 EBytes / year of fully processed data

Processing model: imaging

Where does the data rate drop?

- In current interferometers the data rate drops dramatically out of the correlator
- This is true for SKA1 but not SKA2
- RFI excision needs to be done at high spectral and temporal resolution
- Pulsar search likewise
- In the imaging pipeline data can be averaged after RFI excision

Where does the data rate drop?

For SKA₂

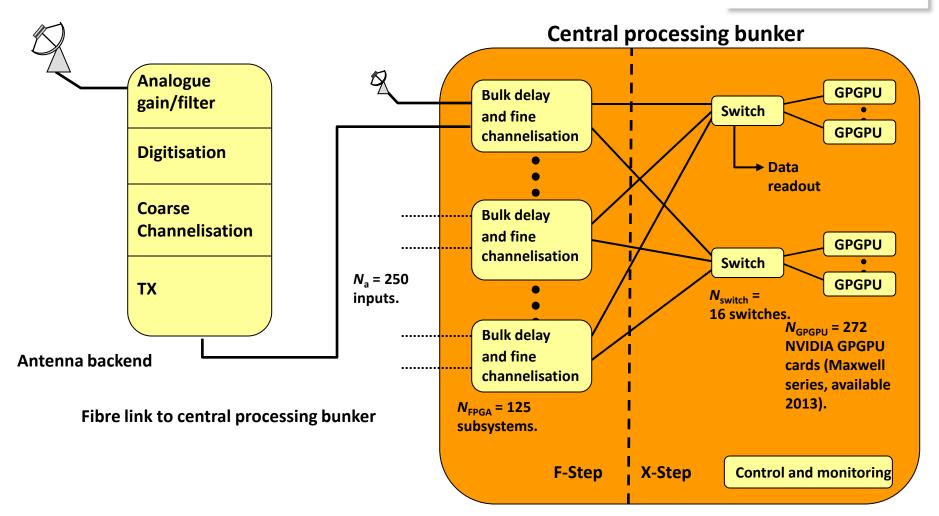
Data rate out of correlator exceeds input data rate for 15-m dishes for baselines exceeding ~130km (36km if single integration time)

At best for dishes output data rate ~ input; AA's reduction by ~10⁴

• Image size: $a^2 N_{ch} (B/D)^2 N_b$ Ratio UV to "image" data

$$\sim 0.06 T_{obs} N^2 g(B) \frac{\Delta f}{f} \frac{1}{a_t a_f} \frac{1}{a^2} \frac{N_p^2}{N_{ch}} \sim 210 \left(\frac{T_{obs}}{1 \text{min}}\right) \left(\frac{N}{1000}\right)^2 \left(\frac{N_{ch}}{32000}\right)^{-1}$$

Major reduction in data rate occurs between UV data and image data



- SKA1 Challenging, but numbers do not scare industry only interest them
- SKA2 will require significant developments

Data flow through correlator Example: Software correlator

