

International Centre for Radio Astronomy Research

THE UNIVERSITY OF WESTERN AUSTRALIA Achieve International Excellence

ICRAR is a partnership between Curtin University of Technology and The University of Western Australia

The High Frequency Flares in Mrk 231

Cormac Reynolds, Brian Punsly, Chris O'Dea, Joan Wrobel

Markarian 231

Broad Absorption Line QSO Seyfert I optically ULIRG

Closest radio quiet VLBI target (z=0.042) – 1 mas = 0.8 pc

Broad emission lines High thermal luminosity

UV broad absorption lines Radio jet

"The Remarkable Seyfert Galaxy Markarian 231" -Boksenberg 1977

From Ulvestad et al. 1999

- Double radio source separated by 1 pc
- Apparently single-sided jet, Seyfert galaxy
 - High T_h implies synchrotron

Centre for Radio Astronomy Research

- Good test-bed for testing intrinsic/environmental influences on RQQ
 - Possibility to detect motion of secondary
 - Secondary is slow moving
 - Jet not significantly Doppler boosted?
 - One-sided jet resulting from free-free absorption?

First Epoch High Frequency Observations

- 15, 22, 43 GHz observations separated by 3 months.
- Phase referenced to J1302+5748
 - Further self-cal possible at all but 43 GHz
- Archival data at 8, 15 and 22 GHz retrieved from the VLBA public archive – 6.6 years
 - Provide additional constraints on long term variability and proper motion
- Calibration and imaging in AIPS, model-fitting in Difmap.

Images – 15 GHz

Peak ~ 60 mJy/beam

Images – 22 GHz

Peak ~ 60 mJy/beam

Images – 43 GHz

Peak ~ 120 mJy/beam

• 10 years of VLBI imaging

Change in Separation: 0.091+/- 0.094 mas 0.026 +/- 0.027 c

• No evidence for relativistic motion

International Centre for **Core and Secondary Spectra**

Radio Astronomy

Core Shift (Phase referenced)

Core Shift (Aligned on Secondary)

- Linear core shift, 15 43 GHz (2006.02)
 - But 22 GHz is optically thin
- Interpret as substructure in core
 - Optically thick + very steep spectrum component
- Extremely efficient cooling mechanism required to produce the very steep spectrum component.

- 2006.32 flare has unusual spectrum
 - Cannot model as FFA for reasonable gas temperatures
- SSA models can be found with plausible physical parameters

THE SPECTRAL ENERGY DISTRIBUTION OF MRK 231

B ~ a few Gauss

Synchrotron Cooling Models

$$\frac{L_{\rm ic}}{L_{\rm synch}} \sim \frac{10^{44} \,{\rm erg}\,{\rm s}^{-1}}{10^{41}\,{\rm erg}\,{\rm s}^{-1}} = 10^3 \;.$$

$$\frac{L_{\rm ic}}{L_{\rm synch}} = \left(\frac{T_b G(\alpha, z)^{1/5}}{10^{12.22}}\right)^5 \left[1 + \left(\frac{T_b G(\alpha, z)^{1/5}}{10^{12.22}}\right)^5\right]$$

$$T_{b} \sim T_{max}$$
 for $\delta = 1$

Mrk 231 not strong Xray source

$$L_{ic}/L_{synch}$$
 = 10e8 at Q_{mi}

How Common Are These Flares?

VLA – Historical plus recent monitoring campaign

VLA Light Curve – 2011 Flare

- Emission from Mrk 231 is significantly Doppler boosted
 - Relativistic jet viewed pole on
 - Another RQQ displaying outflow with high kinetic luminosity
- Rapidly evolving flares, with no obvious structural changes
- Rapid cooling, consistent with synchrotron ageing, with strong B field
- Flares are frequent, and VLBI monitoring will allow us to test the cooling models
- Potential probe of the X-ray emitting gas, X-ray absorbing gas and Broad Absorption Line wind in an RQQ