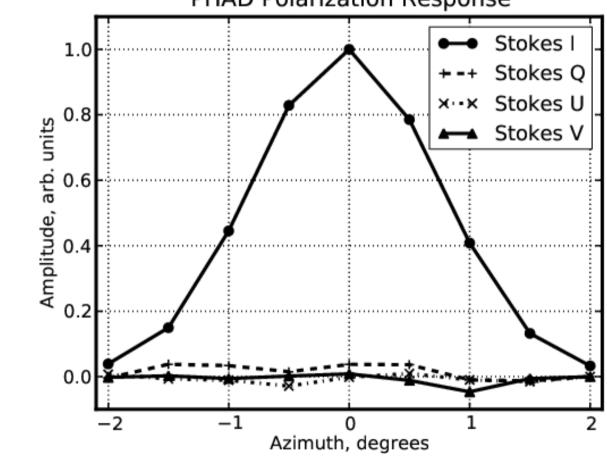
Canadian PAF Update

Bruce Veidt

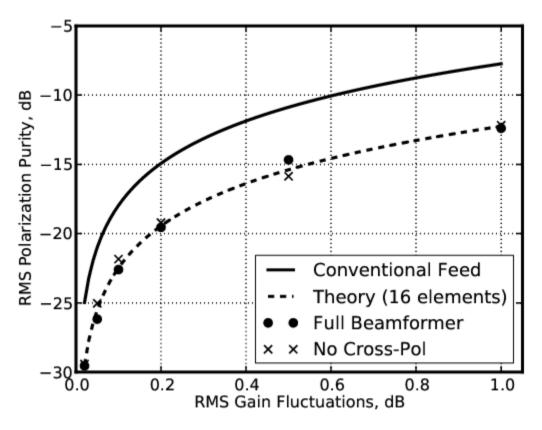
Dominion Radio Astrophysical Observatory
Herzberg Institute of Astrophysics
National Research Council of Canada
Penticton, British Columbia, Canada

Manchester, 24 March 2010

Conseil national de recherches Canada


PHAD

- Array on telescope for 1.5 years
- Dual-pol array (42 active elements in each polarization)
 - First dual-pol PAF results
- Calibration for polarimetry
 - unpolarized source
 - Conjugate Field Matching method
 - o beamformer weights from two dominate eigenvectors
 - yields two beams that are orthogonal in polarization
 - requires additional observation of polarized sources to establish position angle of coordinate system



PHAD

PHAD

-40 dB (pol)
$$\Rightarrow$$
 2 $imes$ 10⁻⁴ $=$ 1 $imes$ 10⁻³ dB (ΔG)

Advanced Focal Array Demonstrator (AFAD)

Goals

- \circ Engineering demonstrator \Rightarrow scientific demonstrator
- Provide PAF for DVA
- Implementation
 - Low-loss Vivaldi
 - CMOS LNA
 - No-conversion receiver
 - \circ 8b@3GHz ADC \rightarrow DSP \rightarrow fibre
 - Real-time FPGA-based beamformer (0.5 GHz BW)
 - Robust calibration

Shaped Optics & PAFs

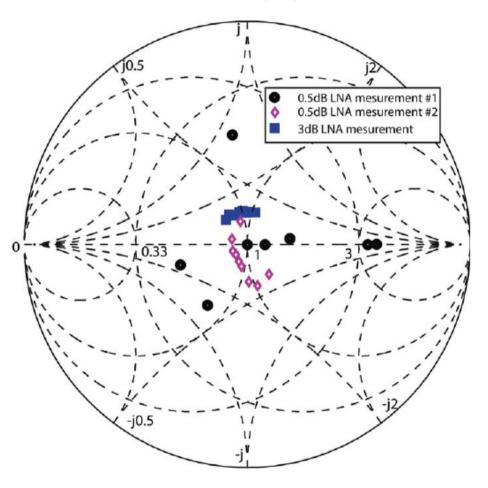
Are shaped optics compatible with PAFs?

- Use Cornell shaped optics design ("42")
- Explore prime-focus caustic region with GRASP9
 - \circ 1m \times 1m measurement plane, transverse fields only
 - integrate total intercepted power
 - vary focal position of measurement plane along beam
 - vary far-field beam direction
 - \circ compare with true parabola with same focal length, f/D, offset angle, etc.

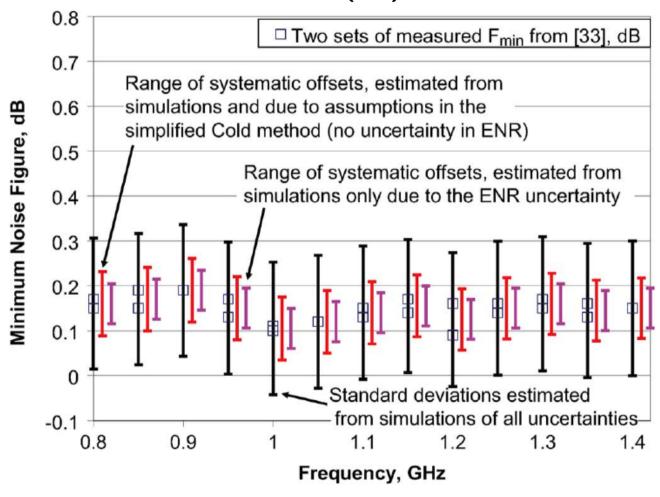
Shaped Optics & PAFs (II)

Findings

- location of best focus is not obvious from ray plots
- off-boresight focal spots are ugly
- \circ can recover 95% of power for $2^{\circ} \times 2^{\circ}$ field by increasing array by 10% in each direction (+20% total area)
- o investigation of secondary focus to come next


Concerns

- not known how to physically combine PAFs with WBSPFs
- o current optical designs do not leave much room for PAFs
- \circ is maximizing A_{eff}/T_{sys} the best optimization goal for shaping algorithm?


LNA (University of Calgary)

- Extensive work on measurement facility
 - PNA-X
 - Focus tuner
 - Maury tuner
 - Maury hot/cold load
 - developed in-house software
- Error analysis
 - Belostotski & Haslett "Evaluation of Tuner-Based Noise-Parameter Extraction Methods for Very Low Noise Amplifiers", *IEEE Trans. MTT*, Jan. 2010, pp. 236–250

LNA (II)

LNA (III)

LNA Future Work

- Develop LNA to interface directly to feedpoint of AFAD Vivaldi element
- 65 nm (TSMC) design in works
- Some concern about fab access