Simulation of Cosmic Reionization: small things matter

Kyungjin Ahn Chosun University UCSD (visiting) SKA Science Workshop, Jodrell Bank Mar 2013

(Some of) Observational constraints on Reionization

- When reionization completed (from high- z QSO spectra)
 - GP effect: $z_{ov} \sim 6.5$??? (only lower limit to neutral fraction at z>6.5)
 - z=7 objects: QSO(Mortlock et al. 2011), LAE in LBGs(Pentericci et al. 2011), LAEs(Ota et al. 2010) → all indicating neutral fraction > 10% at z=7 !!!!!! (Bolton, Haehnelt 2013)
- Reionization history
 - kinetic Sunyaev- Zeldovich effect on CMB
 - SPT: z(x=99%)- z(x=20%) ~ 4.4 7.9 (2σ level, Zahn+ 2011) ← debunked? (Park, Komatsu, Shapiro, Iliev, KA & Mellema 2013)
- Electron content, in terms of Thomson scattering optical depth of CMB
 - $-\tau = 0.089 \pm 0.014$ (WMAP9, 1 σ level)
 - $-\tau = 0.089 + 0.012 0.014$ (Planck+WMAP pol, 1σ level)

Simulation Requirement: Box size & resolution

- Statistics
 - H II bubble ~ 20 Mpc (typical), with outliers
 - Box >~ 100 Mpc (~ 40 arcmin) minimum
 - Box >~ 1 Gpc for large- bubble outliers (ℓ <~60)
 - Cons: numerical resolution
- Resolving sources
 - atomic- cooing halos (ACH): $M > ~ 10^8 M_{\odot} (T_{vir} > ~ 10^4 K)$
 - minihalos (MH): ~ $10^{4-5} M_{\odot} < M < 10^{8} M_{\odot} (T_{vir<} ~ 10^{4} K)$
 - ACH: e.g. Box ~ 160 Mpc, $N_{particle}$ ~ 3000³, M_{min} ~ 108 M_{\odot}
 - MH : e.g. Box ~ 16 Mpc, $N_{particle} \sim 3000^3$, $M_{min} \sim 10^5 M_{\odot}$
 - MHs host Pop III stars (Norman, Wise, Yoshida, Bromm, Abel, ...), and most abundant halo type.

Simulation Requirement: Box size & resolution

- Initial Condition
 - Baryon Dark matter offset (Tseliakhovich & Hirata 2010)
 - baryon velocity (w.r.t. DM) coherent over >~ Mpc
 - for statistics: Box >~ 10 Mpc, but larger (large- k small- k coupled; e.g. Visbal et al. 2012; McQuinn, O'Leary 2012)
 - for physics: Box <~ 1 Mpc (e.g. Stacey, Bromm, Loeb 2011; Greif, White, Klessen, Springel 2011)
- Observation (z_{ov} , τ , ...)
 - tune e.g. emissivity
 - carry grain of salt

Simulation Requirement: Box size & resolution

- Other physics at cosmological scales (length, time)
 - X- ray: Flux~ 1/r², zone of influence <~ 1 Gpc (more?)
 - Lyman- Werner: Flux~ $f_{mod} \times 1/r^2$, zone of influence <~ 100 Mpc (KA, Shapiro, Iliev, Mellema, Pen 2009)
 - non- Gaussianity: halo & ionization bias at ~1-10 Gpc (small- k large- k coupling; Joudaki et al. 2011)
 - light- cone effect: cosmological length scale → delayed time impact (KA et al. 2009); delayed time observation (Datta+ 2012)
- What- to- do
 - brute- force full- dynamic- range simulation: impossible
 - implementation of small- scale (<~ Mpc) physics on large- scale (>~ 100 Mpc) simulation, with correct initial condition
 - subgrid treatment

Simulation Method 1: full radiative transfer

- pros
 - most natural (causal): ray- tracing
 - N- body + radiation + chemistry (+ hydro)
 - suited for EoR study (nonlinear & directional physics)
 - solves for "partial" ionization fraction $x_e=0 \sim 1(1.08, 1.16)$
- cons
 - numerical resolution limited
 - expensive
 - slow

Simulation Method 2: semi-numerical (Furlanetto)

- pros
 - -fast

- suited for parameter search (e.g. Zahn+ 2012)

- cons
 - still numerical resolution limited
 - no partial ionization treated
 - some discrepancy (from ray- tracing ones) in small scales

Reading simulation results with grain of salt

- resolution, resolution
 - any missing clumps?
 - correct clumping factor?
 - correct coupling coefficients? (e.g. Lya transfer)
 - keep open- minded, (try to) exhaust models

21cm-Calculation Requirement: box-size, resolution, etc.

- for 21cm prediction, post-processing only
 - Halo- scale Lya line transfer
 - Large- scale Lya line transfer: Flux~ 1/r^{2.3}, zone of influence
 <~ 200 Mpc (Pritchard, Furlanetto 2006; Semelin, Combes, Baek
 2007; Vonlanthen, Semelin, Baek, Revaz 2011; ...)
 - Halo- scale density & temperature modulation (Shapiro, KA, Alvarez, Iliev, Martel, Ryu 2006;...)
 - Cosmic- scale density & temperature modulation (Bharadwaz, Ali 2004; McQuinn, O'Leary 2012;...)
- What- to- do
 - 3D Lya line transfer (see Benoit's talk)
 - Do not miss small- scale (<~ Mpc) contribution on large- scale (>~ 100 Mpc) simulation
 - calculate in observing frame (velocity)
 - CHORES (for SKA): 21cm power spectrum, 21cm PDF, topology, μ decomposition, "halo- stacking" (Semelin), ...

Subgrid-treated/large-box simulation (with minihalos)

- MH- included simulation (KA, Iliev, Shapiro, Mellema, Koda, Mao 2012)
 - 114/h Mpc box
 - N_{particle}~ 3000³
 - N- body halo resolution: $10^8 M_{\odot}$
 - subgrid: minihalos (one 100- 300 M $_{\odot}$ Pop III star/minihalo, M>=10⁵ M $_{\odot}$)
 - LW feedback $(J_{LW,th}=0.01-0.1 \times 10^{-21} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1})$
 - dynamical feedback (only newly formed halos every 2Myrs active)
- large- scale physics
 - H II bubble size
 - LW feedback
 - not ~ Gpc simulation yet, no non-gaussianity, no X-ray, no hydro
- observation
 - Late reionization(z_{ov} <7) & high τ conditions: hard to match simultaneously
 - hard w/ observed high- z luminosity function
 - hard in numerical simulations (lliev et al.; Zahn et al.; Trac & Cen; ...)
- (one of) simple answer: minihalos
 - hints from semi- analytical studies by Haiman & Bryan (over- boosting τ); Wyithe & Cen; ...
 - inhomogeneous LW feedback treated too crudely (e.g. homogeneous feedback) in semi- analytical studies → still need simulation

What's new?

- Populating grid with minihalos (first stars!)
 - small- box (6.3/h Mpc) simulation resolving minihalos
 - correlation between density & minihalo population (nonlinear bias: KA et al. in preparation)
 - put one Pop III star per newlyborn minihalo
- Considering photodissociation of coolant, H₂
 - calculate transfer of Lyman-Werner Background (KA, Shapiro, Iliev, Mellema, Pen 2009; related to Semelin's)
 - remove first star from minihalos, if LW intensity over- critical

What's new?

- Populating grid with minihalos (first stars!)
 - small- box (6.3/h Mpc) simulation resolving minihalos
 - correlation between density & minihalo population (nonlinear bias: KA et al. in preparation)
 - put one Pop III star per newly- born minihalo
- <u>Considering photo-</u>
 dissociation of coolant
 - calculate transfer of Lyman-Werner Background (KA, Shapiro, Iliev, Mellema, Pen 2009)
 - remove first star from minihalos, if LW intensity over- critical

How LW transfer done: Picket-Fence Modulation Factor (KA et al. 2009)

- Sources distributed inhomogeneously: Need to sum individual contribution
- One single source is observed as a picket-fence in spectrum
- Obtain pre-calculated "picket-fence modulation" factor and multiply it to L/D_L². This becomes mean intensity to be distributed among H₂ rovibrational lines.
 - Relative flux averaged over E=[11.5 13.6] eV
 - multi-frequency phenomenon \rightarrow single-frequency calculation with precalculated factor \rightarrow Huge alleviation computationally.

114/h Mpc, w/ Minihalo+ACH, M(Pop III star)=300M_o, J_{LW,th}=0.1x10⁻²¹ erg cm⁻² s⁻¹ sr⁻¹

<u>Storyline</u>

- Minihalos (<~ $10^8 M_{\odot}$)
 - starts reionization
 - very extended reionization history
 - 20% ionization, boost in optical depth by ~40% possible
- Massive halos (>~ $10^8 M_{\odot}$)
 - determines when reionization is completed
- Late- reionization- completion prior (z < 7)
 - small emissivity in massive halo sources required
 - not large enough optical depth ONLY with massive halo sources
- Early reionization models
 - large optical depth possible only with massive halo sources
 - reionization completes too early (z>~ 8), violating observational constraint
- Late reionization, large optical depth: both can be achieved only with help of minihalo sources, or namely the first stars

puzzle solvable

Early vs. Late Reionization Models No-minihalo vs. Minihalo Models

<u>Question: hypothesis-testing at what confidence level?</u>

- COSMOMC (Lewis, Briddle)
 - Aimed at CMB / matter power spectrum (linked with CAMB, also at Antony's shop at http://cosmologist.info)
 - Does it all
 - Can be tailored for generic application
 - Can be tailored for your custom universe
 - Publicly available
 - Parallelized
- COSMOMC allowing for generic ionization histories (Mortonson & Hu)

Principal component analysis

$$x_{e}(z) = x_{e, \text{fid}}(z) + \sum_{\mu=1}^{N_{\text{max}}} m_{\mu}S_{\mu}(z)$$

$$modul$$

$$modul$$

$$-independent$$

$$(basis)$$

Planck Forecast

$$\frac{Z_{ov} < 7}{(common)} \xrightarrow{high-T} vs. \quad low-T}{(w/minihalo)} \quad (wo/minihalo) \\ (w/first star) \quad (wo/first star)$$

Hu & Holder; Motonson & Hu: PCA for reionization

Planck Forecast (z_{ov} constraint makes contours small)

21cm forecast from minihalo-included simulation

- what I did (literally) until yesterday
 - get IGM temperature (adiabatic)
 - do Lya transfer (with retarded time; convolving Pritchard's compilation with source luminosity)
 - get $\delta T_{\rm b}$ (Lya coupling, kinetic coupling, dr, dx, $dT_{\rm K},$ dg)
 - just for z=15 (89MHz), not filtered yet, no P(k) yet
 - image resolution: 0.2', 0.03 MHz
 - image size: 51'

Of course big-H II bubble easier to probe

- microphysics: MH (first stars) included simulation
 - z~7 Lya + CMB observations matched
 - very extended $\Delta z \sim 6.5$, debunking SPT claim $\Delta z \sim 4$ (by Zahn+): Park,
 - Planck can smell the first stars! (polarization, 2014)

- microphysics: MH (first stars) included simulation
 - z~7 Lya + CMB observations matched
 - very extended $\Delta z \sim 6.5$, debunking SPT claim $\Delta z \sim 4$ (by Zahn+): Park,
 - Planck can smell the first stars! (polarization, 2014)
- 21cm observation (prelim)
 - minihalo- dominated era (30~>z>~ 10): if no X- ray, δT_b~ mK, some ~ 10mK peaks, absorption
 - minihalo- dominated era (30~>z>~ 10): if X- ray, δT_b~ 10mK, emission

- microphysics: MH (first stars) included simulation
 - z~7 Lya + CMB observations matched
 - very extended $\Delta z \sim 6.5$, debunking SPT claim $\Delta z \sim 4$ (by Zahn+): Park,
 - Planck can smell the first stars! (polarization, 2014)
- 21cm observation (prelim)
 - minihalo- dominated era (30~>z>~ 10): if no X- ray, δT_b~ mK, some ~ 10mK peaks, absorption
 - minihalo- dominated era (30~>z>~ 10): if X- ray, δT_{b} ~ 10mK, emission

microphysics: MH (first stars) included simulation

- z~7 Lya + CMB observations matched
- very extended $\Delta z \sim 6.5$, debunking SPT claim D_{I=3000, kSZ}= or $\Delta z < 4$ (by Zahn+): Park+2013 (fuzzy partial ionization field)
- Planck can smell the first stars! (polarization, 2014)
- 21cm observation (prelim)
 - minihalo- dominated era (30~>z>~ 10): if no X- ray, δT_b~ mK, some ~ 10mK peaks, absorption
 - minihalo- dominated era (30~>z>~10): if X- ray, $\delta T_{\rm b}$ ~10mK, emission
 - hard to get strong Lya coupling to generate ~ 100 mK signal
 - needs strong Lya coupling to generate ~ 100 mK signal \rightarrow atomic- cooling halos "but" low f_{esc} for ionizing photons
 - will try different frequencies, so stay tuned
- Needed habit for reading simulation
 - resolution, microphysics (e.g. halo mass resolution)
 - capability for partial ionization for big box (not yet for seminumerical ones: e.g. 21CMFAST, reionFAST; 21CMFAST starting to do partial ionization)