Simulating the EoR 21cm signal

Benoît Semelin LERMA – Paris Observatory

SKA-Low workshop, march 27th, 2013

Physics of the 21 cm signal

$$\delta T_B \propto 28 \,\mathrm{mK} \,\left(1+\delta\right) \left(\frac{1+x_i}{I}\right) \left(\frac{T_S - T_{\mathrm{CMB}}}{T_S}\right) \left(1+\frac{1}{H} \,\frac{dv}{dr}\right)^{-1}$$

 $T_{S} = f(J_{\alpha}, T_{K}, \delta, x_{i})$

21 cm signal simulation: methodology

$$\delta T_B \propto 28 \,\mathrm{mK} \,\left(1+\delta\right) \left(\frac{1+x_i}{T_S}\right) \left(\frac{T_S - T_{\mathrm{CMB}}}{T_S}\right) \left(1+\frac{1}{H} \,\frac{dv}{dr}\right)^{-1}$$

Box size and resolution requirements

Minimum box size set by cosmic variance... of what?

- Density field: < 100 Mpc
- Ionized patches: > 100 Mpc
- X-ray, Ly- α , LW, bulk velocities: a few 100 Mpc

Resolution set (mainly) by the physics of source formation

- Atomic cooling halos: $10^8 M_{\odot}$

- H_2 cooling halos: 10⁶ M_{\odot}

50 000³ resolution elements

Robustness of the absorption regime

If
$$T_{K} < T_{CMB} \Leftrightarrow \delta T_{B} \sim -100 \text{ mK}$$

If $T_{K} >> T_{CMB} \Leftrightarrow \delta T_{B} \sim 20 \text{ mK}$

strong absorption regime!

saturated emission regime

mK

A race between Ly- α coupling and X-ray heating in the IGM !

Baek et al. (2009, 2010):

X-ray do not easily remove 21cm absorption

Good prospects of the SKA 50-100 MHz band (early EoR)

rms signal in absorption and emission: tracking the nature of the sources

- Neglecting absorption: at ~10 Mpc scale

Single maximum at $x_i \sim 0.5$

- Including absorption:

The result depends on the source model...

Several maxima

Anisotropies

Light-cone effects

Hannes et al. (2013)

Large scale correlations will "detect" ionization history => anisotropy.

Light-cone effects

(Zawada et al. 2013, in prep)

Correlation function: // vs perpendicular

Simulations: 400 Mpc/h box

Peculiar velocity effects (Hannes et al. 2013)

Anisotropies on large scales, (> 100 Mpc)
⇒ Large sample variance
⇒ Large FoV required

SKA will give us tomography.

=> We can do new kinds of statistics in the image space.

e.g. we can stack individual sources (bubbles) during early EoR.

Rings in the sky

In the apropriate regime: $\delta T_B \sim \delta J_{\alpha}$

How stacking in image space almost succeeds (Vonlanthen et al. 2011)

- Rings are visible around a single source
- « Source confusion », noise and limited resolution dampen the feature.
- Stacking profiles helps a lot.

Resolution is the limiting factor

Contribution of Lyman γ , δ , ϵ ... to δT_B

Visible with a core twice as large as in the DRM.

Once again a large FoV helps.

What is still missing in the simulations

- Satisfying box size AND mass resolution in the same simulation
- Improving the source model (e.g. escape fraction)
- Including all physics in the same simulations
 (Ly-α, LW, bulk velocities, etc...)
- Run all physics in coupled simulations