AA consortium proposal Figure 3: The sensitivity of SKA-low over frequency. This is as expected for the Baseline Design, limited to 350MHz and the sensitivity at higher frequencies is also shown for the Proposed Design, limited to ~650MHz. Note that there is still good sensitivity even to a scan angle of 60°. | Parameter | Baseline Design | Proposed Design | Comments | |---|---|--|--| | Number of
antenna | 262,144 | 262,144 | 250,000 antennas is for the core only.
911 stations of 289 antenna = 263,279.
Rounded to 262,144 (2 ¹⁸) | | Types of
antenna | 1 | 1 | The full frequency range will be covered by a single element type, as with the Baseline Design. This is for lowest cost. | | Frequency –
low | 50MHz | 50MHz | Push the low frequency as low as reasonable withou
losing performance at 50MHz for future science
capability. | | Frequency –
high | 350 MHz | 650 MHz | The increased frequency limit is accommodated by
the element design. The LFAA operates well at these
frequencies and avoids the dish system having a
large, expensive LF feed and a very large sub-
reflector, while maintaining contiguous frequency
coverage. | | Element
separation | 1.35m
(\(\lambda\/2\) at 111MHz) | 1.35m
(\(\lambda\/2\) at 111MHz) | The spacing of 1.35m is taken from the Baseline
Design. This may not be optimal for the science and
needs checking early in Stage 1. | | Station
diameter | 35m | 20-100m | The "station" diameter, particularly in core, can be varied to suit the experiment. This is managed by th station processing. The variable station diameter should be able to mitigate central processing requirements for many of the experiments. | | Polarisations | 2 – linear | 2 – linear | Essential to have a dual polarisation system | | Number of
bands | 1 | 2 | The full available bandwidth is divided into 2, which handle mutually exclusive science cases. This is similar to switching feeds on a dish. | | Max
instantaneous
Bandwidth | 250-300MHz | 335MHz &
300MHz | Because the full frequency range is covered in two
bands, the output bandwidth is essentially the same
as the Baseline Design but is reused through using a
switched-in first alias on the digitisation. | | Data rate into
Correlator/
Beamformer | 10Gb/s
per 35m Station
10Tb/s total | ≥10Tb/s total | The performance of the SKA-low depends on the total data rate to the central processing. This can be increased as required. | | Data
flexibility | 1 beam/station | Flexibly assigned
to beams within
a band | A great benefit of an AA is that data output can be assigned to arbitrary beamlets in arbitrary directions up to the total designed data rate. Then each experiment can be optimised, or concurrent experiments run. | | Sample
resolution | 8-bit | 4 or 8-bit capability | Many experiments will operate effectively with 4-bit data, hence doubling the total bandwidth for the same data rate. This needs to be agreed with the correlator and post processing groups. |