
Probing RMs due to Magnetic Fields in the Cosmic Web

Takuya Akahori

JSPS Postdoctoral Fellow for Research Abroad Sydney Institute for Astronomy, The University of Sydney Japan SKA Consortium "Cosmic Magnetism" SWG (chair)

Cosmic Magnetism Assessment Workshop 2014/1/22-24 @ Jodrell Bank, UK

Contents:

Probing RM due to Magnetic Fields in the Cosmic Web

1. Science Overview

- 1. Background
- 2. Theoretical Predictions

2. Cosmic Web Science Assessment

- 1. Statistical Approach (Sensitivity)
- 2. Faraday RM Synthesis (Frequency)

3. Summary

Key Messages

- Magnetic fields in the cosmic web is a good science case for SKA1
- Better sensitivity & wide frequency coverage are key parameters

1. Science Overview

3

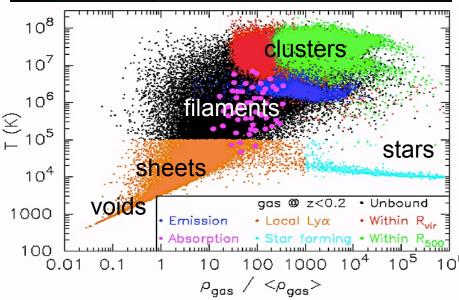
1.1 Background1.2 Theoretical predictions

1.1 Background (1/3): Inter-Galactic Medium (IGM)

4

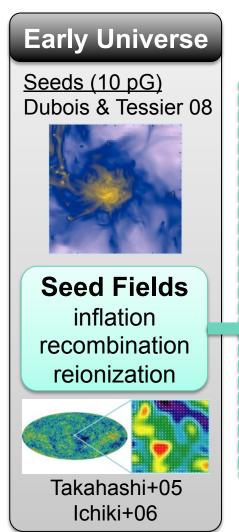
IGM Family

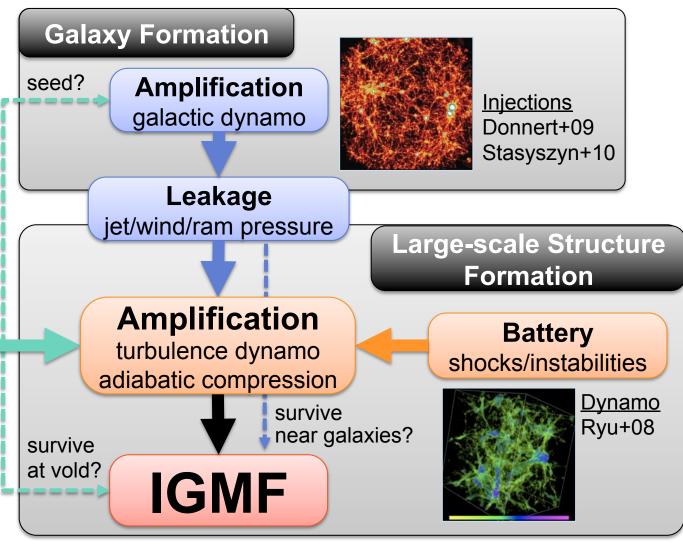
- Intra-Cluster Medium (ICM)
 - Galaxy clusters, T>10⁷ [K]
 - $n\sim 10^{-4} 10^{-1} [cm^{-3}]$
- Warm-Hot IGM (WHIM)
 - Galaxy filaments, T~10⁵⁻⁷ [K]
 - $n\sim10^{-6}-10^{-4}$ [cm⁻³]
- Warm Ionized Medium
 - Sheets and voids, T<10⁵ [K]
 - $n\sim 10^{-7} 10^{-5} [cm^{-3}]$


Is IGM magnetized?

Can we probe the IGM with

SKA1?

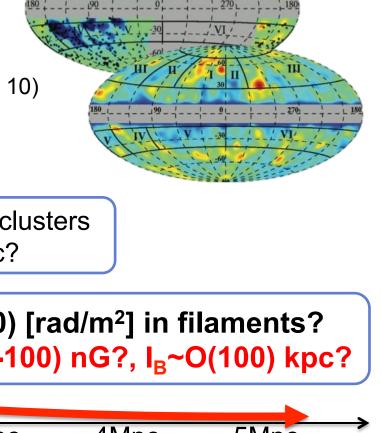


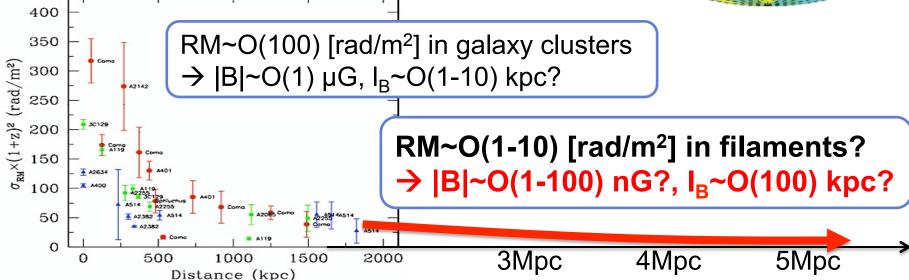

Baryon phase distribution (Piro+07)

1.1 Background (2/3): Inter-Galactic Magnetic Field (IGMF)

5

1.1 Background (3/3): Faraday Rotation Measure (RM)


RM vs galaxies


(Xu+06)

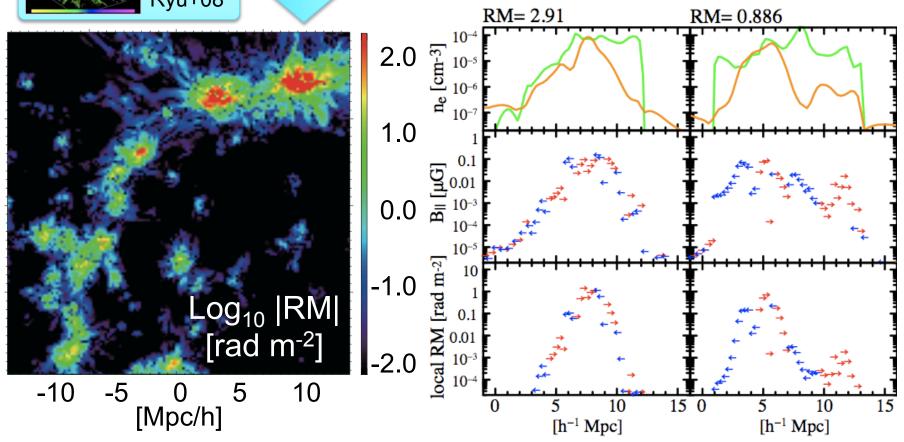
❖ Local superclusters: RM~9-60 [rad/m²]

Hercules and Perseus-Pisces (Xu+06)

- ❖ Residual RM: RRM~7-15 [rad/m²]
 - Between radio sources and the Galaxy (Hammond+12; See also Kronberg+08)
- ❖ Latitude dependence: RM~6-7 [rad/m²]
 - Independent on Gallactic latitude (Schnitzeler 10)
- ❖ Cluster outskirts: RM<50 [rad/m²]</p>
 - Radial profile (Clarke+01; Govoni+10)

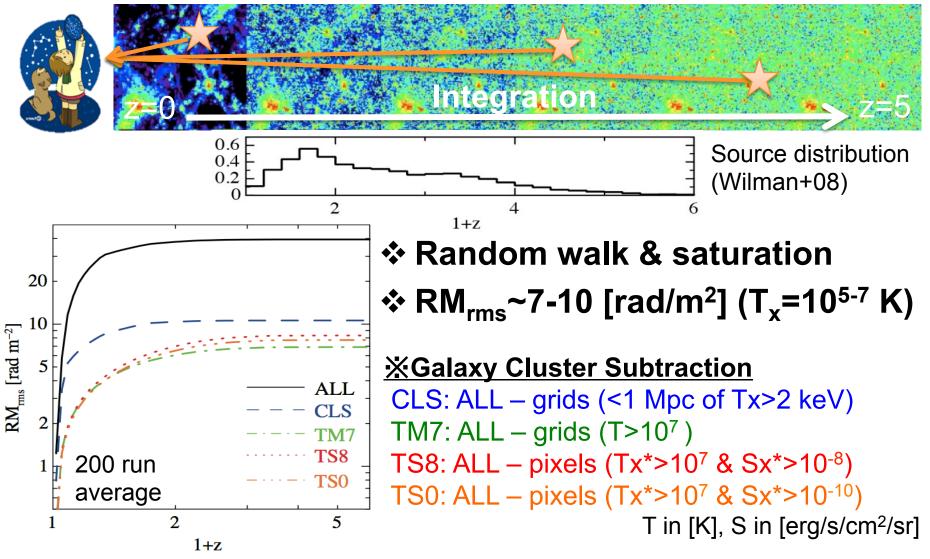
2014/1/22-24 @ Jodrell Bank, UK

Govoni+10



1.2 Prediction (1/3): IGMF-RM in the Local Universe (100 h⁻¹ Mpc)

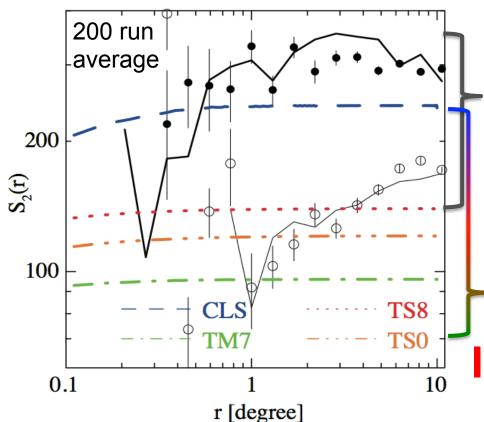
- $RM_{rms} \sim 1.4 [rad/m^2] (T_x = 10^{5-7} K)$
- ❖ I_{RM}~ several × 100 [h⁻¹ kpc]



TA, Ryu (2010), ApJ, 723, 476

1.2 Prediction (2/3): IGMF-RM Integrated up to z=5

8


TA, Ryu (2011), ApJ, 738, 134

1.2 Prediction (3/3): IGMF-RM Integrated up to z=5

n-th order structure function (SF) $S_n(r) = \langle |RM(\vec{x}+\vec{r})-RM(\vec{x})|^n \rangle_{\vec{x}} \propto r^\eta$

❖ Flat S₂ at >0.2° with 100-200 [rad²/m⁴]

- 900 deg² FOV -

←South Galactic Pole

- ●: Mao+ (10) WSRT+ACTA
- -: Stil+ (11) NVSS(VLA)

←North Galactic Pole

←Predictions

Color: Akahori, Ryu (2011)

Is RM_{IGMF} measurable?

→Yes!

TA, Ryu (2011), ApJ, 738, 134

2. Cosmic Web Science Assessment

10

- 2.1 Statistical Approach (Sensitivity)
- 2.2 Faraday RM Synthesis (Frequency)

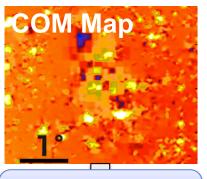
2.1 Statistical Approach (1/4): Multiple RM Components

11

Observed RM contains multiple RM contributions

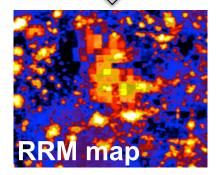
- INT: intrinsic RM associated with the polarized source
- IGM: RM due to the intergalactic magnetic field
- EXG: RM of intervening galaxies/clouds
- ISM: RM due to the Galactic magnetic field
- ERR: RM of ionospheric, instrumental, etc

COM: combined RM (observed RM)


- $-\mu_{COM} = \mu_{INT} + \mu_{IGM} + \mu_{EXG} + \mu_{LGG} + \mu_{ISM} + \mu_{ERR}$
- $-\sigma_{\text{COM}}^2 = \sigma_{\text{INT}}^2 + \sigma_{\text{IGM}}^2 + \sigma_{\text{EXG}}^2 + \sigma_{\text{LGG}}^2 + \sigma_{\text{ISM}}^2 + \sigma_{\text{ERR}}^2$

2.1 Statistical Approach (2/4): Can we extract RM due to the IGMF?

12



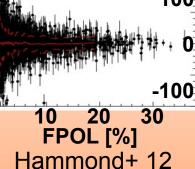
INT filter

EXG filter

ISM filter

ERR filter

Remove "obscured" sources which indicate depolarization signals


Spatial resolution & high frequency

Remove suspicious LOSs

MgII absorber system & depolarization RRM [rad/m²]

40,429 MgII 107,194 quasars Bernet+ 12 Zhu, Merand 13

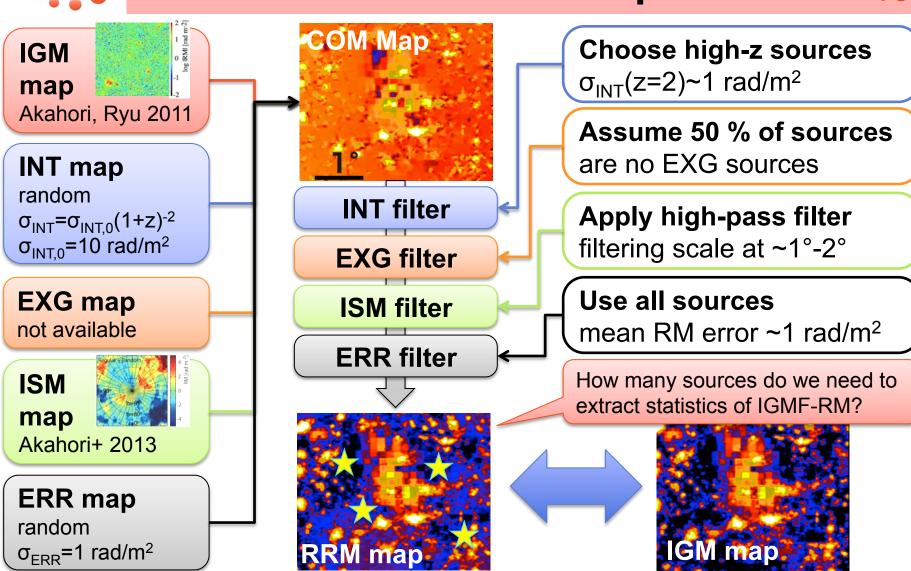
(a) All data 00

Look Galactic Pole & Apply high-pass filter (~1°-2°)

FOV at least a couple of tens deg²

Remove low S/N sources

Need, say, $10 \pm 0.1 \text{ rad/m}^2 \text{ level}$

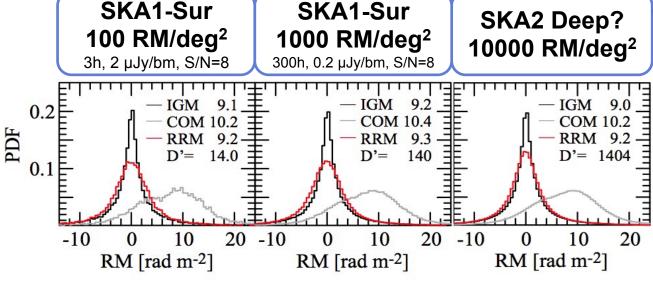

Polarization purity & sensitivity

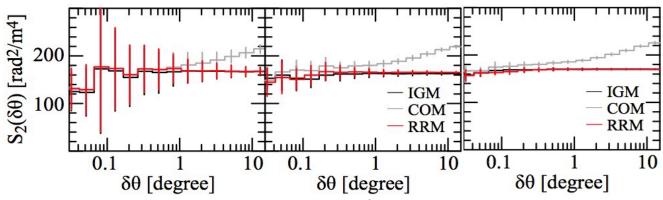
TA, Gaensler, Ryu submitted

2.1 Statistical approach (3/4): Extraction Model/Assumption

13

2014/1/22-24 @ Jodrell Bank, UK

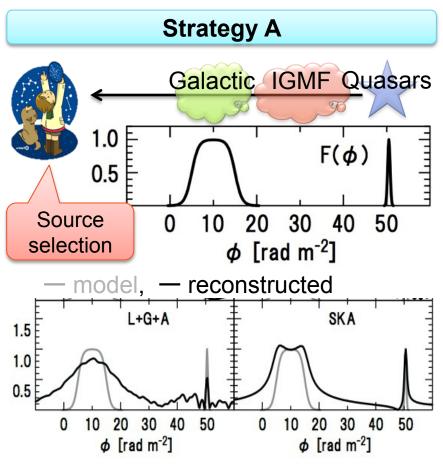

TA, Gaensler, Ryu submitted



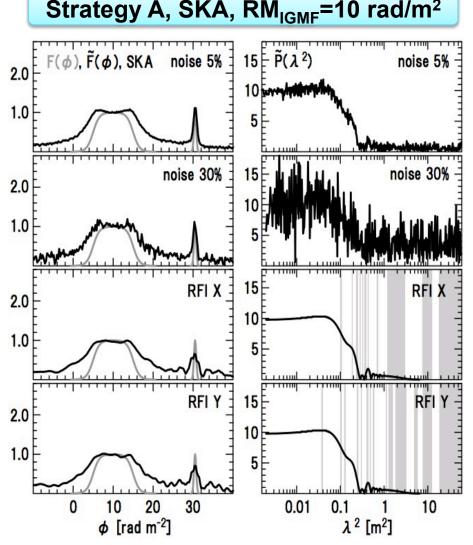
2.1 Statistical approach (4/4): Results

14

- Our selection criteria: ~14% of sources are available
- * 1000 RM/deg² data may allow to extract S_{2,IGM} down to ~0.1°


2014/1/22-24 @ Jodrell Bank, UK

TA, Gaensler, Ryu submitted

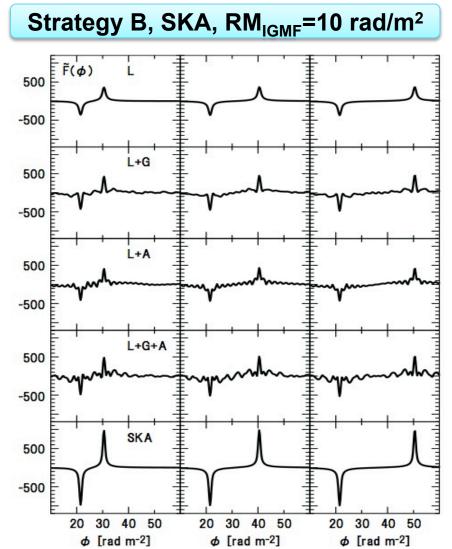


2.2 Faraday RM Synthesis (1/4): Concept & Direct Reconstruction

15

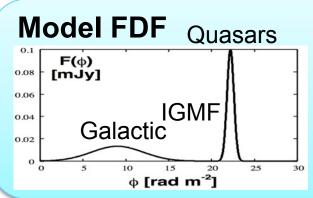
❖ SKA full band (0.07-10 GHz) is very powerful

TA, Takahashi+, submitted



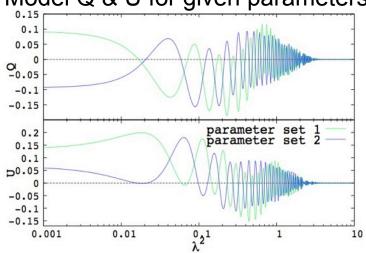
2.2 Faraday RM Synthesis (2/4): Concept & Direct Reconstruction

16

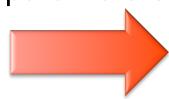

Strategy B Galactic **IGMF** Quasars Sources should be as close Source as possible (<0.1°) selection SKA 1.5 F(φ) $(||)^{\frac{1}{2}}$ $1.5 \cdot F(\phi)$ (1)1.0 1.0 0.5 0.5 30 40 50 20 40 20 40 ϕ [rad m⁻²] φ [rad m-2] ϕ [rad m⁻²]

❖ SKA full band (0.07-10 GHz) is very powerful

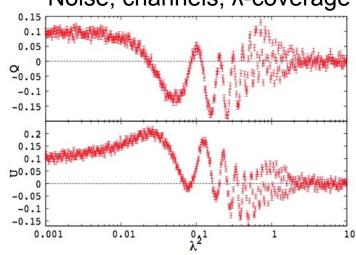
2.2 Faraday RM Synthesis (3/4): **QU-fitting decomposition**



$$\begin{split} F(\phi) &= \frac{f_{\rm d}}{\sqrt{2\pi}\delta\phi_{\rm d}} e^{2i\theta_{\rm d}} \exp\left\{-\frac{(\phi-\phi_{\rm d})^2}{2\delta\phi_{\rm d}^2}\right\} \\ &+ \frac{f_{\rm c}}{\sqrt{2\pi}\delta\phi_{\rm c}} e^{2i\theta_{\rm c}} \exp\left\{-\frac{(\phi-\phi_{\rm c})^2}{2\delta\phi_{\rm c}^2}\right\} \end{split} \quad \text{Definisions of model parmeters} \quad \end{split}$$

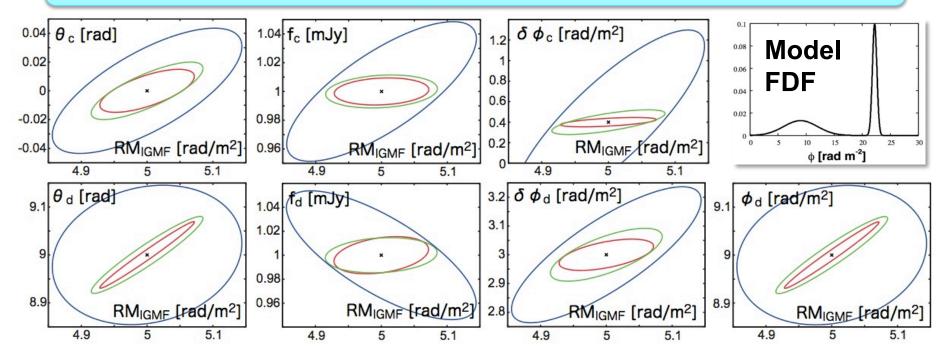

$$RM_{\rm IGMF} = (\phi_{\rm c} - 3\delta\phi_{\rm c}) - (\phi_{\rm d} + 3\delta\phi_{\rm d})$$

Fourier transform


Model Q & U for given parameters

fit & seek the best parameters

Mock Q & U Noise, channels, λ-coverage


Ideguchi, Takahashi, TA+ (2013)

2.2 Faraday RM Synthesis (4/4): QU-fitting decomposition Results

18

SKA1-Survey, 1 hr, 1 mJy source, RM_{IGMF}= 5 rad/m², 3σ confidence —650-1670 MHz —500-1500 MHz —350-1350 MHz

❖ Full frequency coverage is desirable. But if it is not initially feasible, going to lower frequencies would be better for SKA1-Survey PAF Band 2

Summary

RM due to magnetic fields in the cosmic web

- σ_{RM} ~1 rad/m² for a filament, σ_{RM} ~several-10 rad/m² up to z=5

Key specification (major/minor)

- Sensitivity: as better as possible. Proposing continuum sensitivities (Sur-3.72, Low-2.06, Mid-0.72 μJy/hr^{1/2}) are essential
- Frequency: as wide as possible in λ² space. If we survey with Low +Sur, we should apply both PAF band1 (350-900 MHz) and band 2 (650-1670 MHz), or band 2 should go to e.g., 500-1500 MHz
- Polarization purity: 10±0.1 rad/m² (so <1%?) but 1 rad/m² error OK
- FOV: Toward the poles. ~900 deg² is reasonable (prev. observations)
- Spatial resolution: need to dignose depolarization effects
- High Frequency: need to dignose depolarization effects
- Largest angular scale: proposing spec. (~1°) is satisfactory

Remarks

- Need to develop source selection schemes/criteria
- How many sources will we obtain with SKA1?