

Buffering Transients Basic use cases

- Buffer stores a rolling N seconds of "raw" data.
- Buffer can be frozen, dumped to storage, and processed offline.
- Scenario I: triggered by a real-time SKA transients search pipeline (internal trigger).
- Scenario 2: triggered by an external alert.
- Scenario 3: triggered randomly for other science purposes (e.g. very high-time-res imaging offline).
- Scenario 4: triggered for testing, commissioning, regular system monitoring.

Buffering Transients Why?

- Localization to I-2 arcsec of short, impulsive, non-repeating transients.
- Full polarimetry.
- Full time resolution.
- Possibly coherent dedispersion.
- Low-level signal verification.

Buffering Transients Where?

- Station/antenna raw voltages.
- and/or non-accumulated visibilities
- and/or tied-array voltage beam

Buffering Transients What?

- Storing 10s of data will take ~256GB of memory per buffer element (could trade for bandwidth).
- Buffer size dictated by event duration, system latency and dispersive sweep across the band.
- SKA-Low: 350-250MHz is a 33s delay for a DM = 1000pc/cc.
- Readout and offline processing should be shorter than time between triggers.
- Expect order 10s of triggers per day.

Operations per second required to process real-time incoherent beam

$$N_{ops} = N_{DM} \times N_{pol} \times N_{beams} \times BW \times N_{ant}$$

 $N_{pol} = 2$

 $BW = 300/N_{beams} MHz$

 $N_{ant} = 1024$ (full array), 768 (core), 512 (inner core)

 $N_{DM} = DM_{max,TBB}/\Delta DM$

 $DM_{max,TBB} = T_s \ v_{GHz}^3 \ / \ 8.3 \times 10^{-6} \ / \ \Delta v_{MHz}$ where T_s is the size of buffer (seconds)

$$\Delta {
m DM} pprox 506 rac{W_{
m ms}
u_{
m GHz}^3}{\Delta
u_{
m MHz}}$$
 Cordes+ (2003)

$$A_{eff}/T_{sys} = 1070 \text{ m}^2/\text{K}$$

 $v = 200 \text{MHz}$

Example: Operations per second required to process real-time incoherent beam

 $N_{ops} = N_{DM} \times N_{pol} \times N_{beams} \times BW \times N_{ant}$

N _{ant}	BW/beam	N _{beams}	Ts	DM _{max,TBB}	ΔDM	N_{DM}	N _{ops}
1024	300MHz	I	300s	960	0,01	72.300	4,40E+16
768	300MHz	I	300s	960	0,01	72.300	3,30E+16
512	300MHz	I	300s	960	0,01	72.300	2,20E+16
1024	100MHz	3	300s	2900	0,04	72.300	4,40E+16
768	100MHz	3	300s	2900	0,04	72.300	3,30E+16
512	100MHz	3	300s	2900	0,04	72.300	2,20E+16