SKA Transients Science Working Group

Headline science and requirements

Rob Fender (chair), Cath Trott, Hayley Bignall, Ben Stappers, Casey Law, Adam Deller, Shami Chatterjee, Ian Morrison, Tara Murphy, Stephane Corbel, Jason Hessels, Jean-Pierre Macquart, Zsolt Paragi, Aris Karastergiou

Advisors: Evan Keane, John Swinbank, James Miller-Jones, Joe Lazio, Andrew Siemion, Gregg Hallinan, Richard Armstrong

[Europe 8, Australia 7, South Africa 2, USA 5]
Transients and the SKA “Key Science Programmes”

– are the original KSPs still valid points of reference?

– Transients relates to parts of several of the original KSPs but should not be bundled merely as “exploration of the unknown” which seems to be a 'soft' design consideration

– Astronet, UK Astronomy advisory panels, etc. all list Extensive Astrophysics as one of their top priorities

– LOFAR, ASKAP, MeerKAT all approved Transients as Key Science
Two flavours of radio transients

Incoherent synchrotron emission
- Relatively slow variability
- Brightness temperature limited
- Associated with all explosive events

Find these (mostly) in images

Coherent emission
- Relatively fast variability
- High brightness temperature
- Often highly polarised
- Sometimes very steep spectra

Find these (mostly) in time series

Early branch in classification pipelines
Transients science

Extreme environments and Astrophysics

Testing relativity

Lighthouses to huge distances

All of these are 'killer science' if *Nature/Science* and national reviews are anything to go by
Pulsars: discovered as unexpected astrophysical transients

GRBs (and their afterglows): largest cosmic explosions, visible to ~EoR, huge multiwavelength coordinated effort → 100s of Nature papers...

Supernovae: Ia → cosmology. Optical surveys finding many new classes.
Coherent bursts

FRBs: potentially unmatched as cosmic probes of the IGM

Bursts from extrasolar planets?
Synchrotron emission

Tracer of all astrophysical explosions: Calorimeter of relativistic kinetic feedback

Probe of black hole populations
Maximise The Science

Concept of Operations Section 2.6

“The primary success metric for the SKA Observatory will be the significance of its role in making fundamental scientific discoveries and facilitating overall scientific progress, expressed as high impact, peer-reviewed scientific papers using SKA data. Additional success metrics such as the total number of users, etc., will also be developed and measured.”

-- all of these metrics will be greatly enhanced by commensal analysis of data and public release of alerts.
Making the SKA a 21st century telescope:

commensal searches and rapid response
Predicted rates

Will the transients be rare, manageable or a deluge?

LSST – a SKA contemporary – anticipates finding N transients / night
Predicted rates: GHz

We know there are interesting transients here, but rates not very well determined

1% of mJy-level sources at 1 GHz are significantly (>25%) variable

At 5 GHz, tidal disruption evens may dominate (Frail et al. 2012)
For ~10 uJy r.m.s. expect about 1 transient per deg$^{-2}$ → 0.1-10 per day with SKA$_1$-Mid
Predicted rates: GHz
Assuming commensal searches, otherwise order of magnitude smaller

Probably of order 1 interesting new image-plane transient per day (plus a whole bunch of sources you're monitoring, plus a stack of AGN variability)

Only really tested to \simmJy sensitivity

CHILES will test to \simuJy depth (albeit in a narrow field)
Predicted rates: MHz

Less clear

Transients reported, and pulsars of course detected

Best image-plane rate estimates probably from LOFAR (still being established)

FRBs: could be a lot, depends on spectrum and scattering
Results from LOFAR search for transients in NCP MSSS observations at 60 MHz

Stewart et al. (in prep)
Low Frequency Transient Limits

Stewart et al. (in prep)
Detection not limit (maybe)

→ one transient per 1000 deg2 at a r.m.s. of 100 mJy

→ 0.1-10 per day with SKA$_1$-Low
Predicted rates: MHz
Assuming commensal searches, otherwise order of magnitude smaller

Minimum 1 interesting new transient image-plane per day, could be considerably higher

Only really tested to ~ 100 mJy sensitivity Better LOFAR data will test to ~1 mJy

FRB rate should be > 1 day\(^{-1}\) (caveat spectrum)
Multiwavelength

Don't forget to consider the environment SKA will be operating in

\[\text{LSST} \rightarrow 10^6 \text{ transients/night} \]
\[\text{ATHENA+} \rightarrow \text{transients} \]
\[\text{LIGO} \rightarrow \text{transients?} \]
\[\text{CTA}^* \rightarrow \text{transients} \]

(* CTA is being designed for very rapid slew response to external alerts, despite there being far fewer UHE transients than radio transients!*)
Synergies with other major facilities

- **ATHENA+**
- **LSST/E-ELT**
- **CTA**
- **LOFAR**
- **SKA phase I**
- **SKA phase 2**
NASA / LIGO / LSST / CTA / ++ all strongly support the push for commensal transient searches with SKA and confirm their communities would make use of them

Dear Professor Fender, Professor Braun,

I am the spokesperson of the LIGO Scientific Collaboration (www.ligo.org), a large international group of scientists dedicated to the search for gravitational waves with the LIGO interferometric detectors at Hanford, Washington and Livingston, Louisiana in the United States (www.ligo.caltech.edu).

The gravitational waves we will be detecting for the first time in the few years after we begin operating will originate in strong astrophysical events that are very likely to have counterparts in the electromagnetic spectrum, and we are fostering collaborations so we can share transients in very short time scales, to enable follow up of all interesting events – see our latest call for collaborations in http://www.ligo.org/science/GWEMalerts.php.

For that reason, our community strongly support the inclusion of near-real-time commensal searches for all three components of the SKA. We are aware that the current SKA phase 1 baseline design does not have a concrete commitment to such a provision, but wish to urge the SKA Project Office to reconsider this. Adding a commensal transient search capability to all SKA phase 1 components would increase the rate of radio transient detection by the SKA an order of magnitude.

The LSC would very much like to establish a collaboration with SKA for the prompt follow up in radio of gravitational wave transients. We note that the Transients SWG are committed to transmit detections being broadcast immediately to the worldwide astronomical community, providing a fantastic resource for multiwavelength and multimessenger studies of extreme phenomena. This is something we, and our community, would most certainly take advantage of.

Sincerely,

Gabriela González
Professor of Physics and Astronomy, Louisiana State University
Spokesperson, LIGO Scientific Collaboration

January 19, 2014

Dear Professor Fender, Professor Braun,

I am writing this representing on behalf of the NASA Swift project for which I am the Principal Investigator. Our project strongly supports the inclusion of near-real-time commensal searches for all three components of the SKA. We are aware that the current SKA phase 1 baseline design does not have a concrete commitment to such a provision, but wish to urge the SKA Project Office to reconsider this. Our own project works heavily in the area of transients and variables, which have provided many key astrophysical advances and breakthroughs in the past decades (e.g. pulsars, gamma-ray bursts, microquasars, fast radio bursts).

Adding a commensal transient search capability to all SKA phase 1 components would increase the rate of radio transient detection by the SKA an order of magnitude. We note that the Transients SWG are committed to transmit detections being broadcast immediately to the worldwide astronomical community, providing a fantastic resource for multi-wavelength and multimessenger studies of extreme phenomena. This is something we, and our community, would most certainly take advantage of.

Best Regards,

Neil Gehrels
Chief, Astroparticle Physics Laboratory
Summary

Wide range of science

Potential for the biggest discoveries: maximise your field of view (beams) and time on sky (commensal searches, transient buffer boards)

Desperately needs not to have commensal searches and robotic designed out → headline request from Transients SWG

Design an ambitious 21st century telescope!