

Software and Computing Domain: WP2.6.2 Computing Hardware Architecture

Duncan Hall, Chris Broekema WP2 Meeting 2010 October 29

WP2.6.2 Hardware options for SKA computing

- Calibration and imaging requirements for SKA1
- Forecasts of COTS hardware capabilities
- Forecasts of COTS power requirements
- Data input output challenges

WP2.6.2 Hardware options for SKA computing

- Calibration and imaging requirements for SKA1
- Forecasts of COTS hardware capabilities
- Forecasts of COTS power requirements
- Data input output challenges

WP2.6.2 Computing hardware architecture development: requirements for calibration and imaging

Contributions to date; Current Status	Challenges to be addressed
•A spreadsheet model identifying key cost driver parameters and likely pessimistic-optimistic ranges has been published on the S&C Domain wiki	•The required number of floating point operations per u-v sample ("flops per float") will likely range from 100,000 to 400,000+
	 This leads to requirements for hundreds of petaflop/s to ~1 exaflop/s for SKA1 as defined in Memo 125
	•The "flops" metric is only one measure of HPC performance; disk input-output data rates, cache memory access speeds and sizes, and hardware reliability can be just as important

SKA

CPG Memo 3 (2009-11-6) confirms

requirements for extreme scale computing:

Figure 1: Semi-log y plots of computational costs (without consideration of deconvolution and parallel computing efficiency η) vs. antenna diameter D for continuum imaging for the 3-D direct FT, 3-D FFT, facets, w-projection, and hybrid facets/w projection imaging algorithms.

Intel asserts that Moore's 1965 observation will continue to hold to ~2020 ...

Moore's Law

...the number of transistors on a chip will double about every two years...

> Performance for serial and parallel applications

> More cores, threads and performance at similar to lower power levels

Transformed the Economics of HPC

... but the advent of multiple cores per chip has major implications for software at extreme scale ...

Challenges to be addressed	Work to be done; Milestones; Risks
•The required number of floating point operations per u-v sample ("flops per float") will likely range from 100,000 to 400,000+	•Opportunities to improve performances over that of current codes must be explored – in WP2.6.3 work
•This leads to requirements for hundreds of petaflop/s to ~1 exaflop/s for SKA1 as defined in Memo 125	•Opportunities to shift computing load from general purpose von Neumann architecture to special purpose architectures – using for example
•The "flops" metric is only one measure of HPC performance; disk input-output data rates, cache memory access speeds and sizes, and hardware reliability can be just as important	hardware accelerators – must be explored as a follow on from WP2.6.3 work

WP2.6.2 Hardware options for SKA computing - Calibration and imaging requirements for SKA1

- Forecasts of COTS hardware capabilities
- Forecasts of COTS power requirements
- Data input output challenges

Contributions to date; Current Status	Challenges to be addressed
•Recent published research on Commercial Off The Shelf (COTS) hardware capabilities and power requirements has been posted on the S&C Domain wiki	•Other than essentially one-off "icon" installations, COTS High Performance Computers (HPCs) with capacities of ~1 exaflop/s are not likely to be commercially available until ~2020
 Forecasts of performance from vendors of compute elements (e.g. Intel and NVIDIA) have been posted on the S&C Domain wiki 	 The typical cost of high end HPC hardware is ~€100 million; other infrastructure such as persistent storage is additional
	•The stretch target power consumption for exaflop/s class HPCs given to US vendors is ~20 MW for the HPC alone

Forecast: ~135 watt Maxwell chip to deliver ~2 DP Tflop/s in 2013 SP \approx 5 x DP \Rightarrow ~100 SP Gflop/s per watt [= 10pJ/flop]

CUDA GPU Roadmap

It is not impossible that the equivalent of GPU-powered boards operating at 100+ SP Gflop/s per watt could deliver 1 EF for ~10 MW

Challenges to be addressed	Work to be done; Milestones; Risks
•Other than essentially one-off "icon" installations, COTS High Performance Computers (HPCs) with capacities of ~1 exaflop/s are not likely to be commercially available until ~2020	•Characterisation of all sources of power consumption – including interconnection, power conditioning, persistent storage and environmental control – is required in order to estimate the total power costs
 The typical cost of high end HPC hardware is ~€100 million; other infrastructure such as persistent storage is additional 	•Significant work is required to assess the feasibility of HPC using heterogeneous architectures, e.g. learn from LOFAR, ASKAP and Single Digital Backend
•The stretch target power consumption for exaflop/s class HPCs given to US vendors is ~20 MW for the HPC alone	 Interim results of work to be delivered before CoDR in September 2011
	 Little downside risk: work is research

AST(RON

WP2.6.2 Hardware options for SKA computing

- Calibration and imaging requirements for SKA1
- Forecasts of COTS hardware capabilities
- Forecasts of COTS power requirements

- Data input – output challenges

Network and interconnection for LOFAR is "non-trivial" AST(RON

Contributions to date; Current Status	Challenges to be addressed
 ASTRON experience: for LOFAR data streaming, the default IBM Blue Gene P input I/O configuration was more than 50% too slow Various optimisations were required to improve performance Need to consider I/O on all levels: System design, operating system, communications stacks, application Current software not optimised for throughput: Mostly optimised for connections and stability Much of the required work needs to be done in-house At least some expert knowledge is required, e.g. Linux kernels on I/O nodes 	 Cost of I/O is non-linear with scale: <u>Number of active switch chips</u>: scales faster than port count because of fat-tree configuration; doesn't scale beyond a few thousand ports due to limited port count per component with much worse scaling from there on <u>Procurement cost</u>: added costs of interconnect components; additional complexity; and high bandwidth COTS cards are just not available beyond a few thousand ports <u>Energy</u>: line energy cost is ~linear with distance, but need to add costs of noise handling algorithms and interconnect active components

Scaling issues with standard network port cards (1/2) AST(RON

A 48 port GbE switch, representative of a hardware-efficient universal fat-tree network design:

- Loads of chips needed already
- Non-blocking performance not guaranteed

Scaling issues with standard network port cards (2/2) ASTRON

This design will not scale indefinitely.

For N ports per switch chip:

Max port count = $N^2 / 2$

when using a single type of switch chip; this uses three types

Source: Energy at ExaFlops, Peter M. Kogge, SC09 Exa Panel

WP2.6.2 energy cost for input / output: interconnection at top level only

Moving data costs a tremendous amount of energy

Hundreds of kilowatts to megawatts for SKA

Moving data over hundreds or thousands of km will cost even more energy

Switching costs a lot of energy too

A non-blocking thousands-of-ports switch will consume power at a staggering rate

This will probably not scale well

N-dimensional torus may be feasible; but is not currently COTS

In addition, getting data into various machines is challenging see LOFAR case

Limiting the port count can significantly reduce cost

By avoiding low efficiency network topologies

Should investigate design of an over-subscribed network

Finally, need to reduce data flows to keep SKA affordable

Otherwise moving bits will end up dominating the power budget

Sustained COTS exascale is coming: ~2020

- US and other government-funded initiatives for e.g. energy and climate modelling and related research
- Substantial change in hardware architectures will drive change in software: e.g. multiple threading across millions of cores (IESP)
- But, SKA1's requirements will push the 2020 envelope of COTS hardware capabilities
- Purpose built hardware solutions for SKA1 will also be subject to the challenges of computation at exascale:
 - Amdahl's laws
 - Energy for interconnection
 - Reliability