Progress Report: SKA LNA's and Feeds

Ahmed Akgiray and Sander Weinreb Albuquerque, Oct 12, 2010

- 1. Accomplishments
- 2. Room temperature 0.3 to 1.4 GHz
- 3. New quad-ridged flared horn (QRFH) feeds
- 4. QRFH performance in DVA-1

TDP Accomplishments

- 1. First SiGe LNA's for Radio Astronomy 3K noise to 5 GHz with very reproducible low-cost silicon process. Foundry run started in 2010 for higher frequencies
- 2. Room temperature LNA's for 0.3 to 1.4 GHz. Enormous impact on SKA cost and power consumption!
- InP HEMT LNA manufacturability Hundreds of cryogenic 1 to 12 GHz LNA's built and infused into radio astronomy- yield problem investigated.
- 4. Wideband quadridge horn feeds highly developed
- **5. Future instrumentation leaders** Two Ph.D's completed (Jones and Bardin) and two more on the way (Akgiray and Russell).

Room Temperature Very Low Noise Amplifier for 0.3 to 1.7 GHz

- Measured noise < 20K from 0.8 to 1.6 GHz
- SKA construction and operations costs would be reduced due to the elimination of cryogenics for this frequency range,

1 to 12 GHz LNA Module

Caltech Cryo1-12 Module Performance

Typical Oct 2010 Module

Noise and Gain of LNA 287D at 20.5K

Best Nov 2008 Module

Old Noise and Gain of LNA 154D iat 15K

Quick Intro to Recent Caltech Feed Work

- Achieved 6:1 impedance and pattern bandwidth from quad ridge loaded flared horn (pushing to get > 7:1)
- Horn can easily be redesigned for half angles anywhere between 30 to 60 degrees
- Wideband feed work at Caltech evolved from a stock ETS-Lindgren quad-ridge design to current design over the course of a few months
- 6000+ (and counting!) simulation runs completed on almost as many different configurations

Evolution of Quadridge Feed Designs: Farfield Pattern Comparison

Return Loss Comparison

Much improved return loss in the band of interest (1.4 to 10 GHz) in addition to much improved patterns

Note: Lindgren RL is with respect to the spec of 50 Ohm That of QRFH is with respect to 100 Ohm

Manipulating Beamwidth

By only varying one parameter, significant beamwidth manipulation is possible. More parameters -> even more beamwidth control

Aperture Efficiency in DVA-1

- Blue curve is new flared horn; red curve is for Lindgren feed.
- Computed 'by W.Imbriale using physical optics for DVA-1 subreflector and reflector.
- We believe with further optimization the efficiency dip at 6.5 GHz can be removed to give > 60% efficiency over a 7: 1 frequency range, 1.4 to 10 GHz.

New development: Mode suppressor Better than 55% aperture efficiency

We recently discovered the cause of efficiency dip mid-band.

Sudden beamwidth narrowing was causing a drop in aperture efficiency.

Culprit was higher order modes excited at 70 the feed point of horn.

Solution: ring around feed input increases 50 cutoff freq of higher order modes with little

impact on low frequencies

and very little spillover quite

Solid curves are 1st order estimates of efficiency (not calculated by PO). We expect PO efficiency in shaped optics to be 5-10% higher throughout the band as suggested by difference in blue solid and black dashed

Updated efficiency in DVA_1

Backup

Return Loss Comparison

Manipulating Beamwidth

By only varying one parameter, significant beamwidth manipulation is possible. More parameters -> even more beamwidth control

