Analog Optical Link Technology for the SKA

Peter Maat – ASTRON Thomas Berenz – MPIfR Federico Perini – INAF

Introduction

- Analog Optical Links in PrepSKA-STaN
 - Partners
 - ASTRON
 - INAF
 - MPIfR
 - Topics
 - COTS component and system inventory
 - System development
 - System investigation: RF performance and stability

- Analog Optical Link Application Area:
 - Aperture Array Tile Connection
 - PAF / SPF Connection
 - PAF Antenna Element Connection

- Why Photonic Technology
 - Broadband / High Frequency
 - Immunity for RFI
 - Light Weight
 - Small Space Envelope

External Modulation: Link Gain

ASTR

• External Modulation: Dynamic Range

ASTR

	Noise lovel	11	lz	1 GHz		
Optical power at detector		IMF3	RFin	IMF3	RFin	
(dBm)	(dBm/Hz)	(dB)	(dBm)	(dB)	(dBm)	
4.7	-168.5	107.49	-31.06	47.49	-10.9	
6.7	-166.8	110.68	-31.65	50.68	-11.35	
8.7	-164.9	112.52	-32.65	52.52	-12.45	
12.3	-160.8	113.22	-34.85	53.22	-14.45	

$$\rightarrow$$
 IMF3 = $\frac{2}{3} \cdot (\text{OIP3} - P_{\text{noise}})$

STR

Implementation of AOLs

RF systems with external modulation AOL

	Туре	Gain	NF		P2	IP3	
				In	Out	In	Out
		(dB)	(dB)	(dBm)	(dBm)	(dBm)	(dBm)
Antenna		-0,2					
Low Noise Amplifier	ATF-54143	16	1.5			18.0	36
RF Amplifier	MGA-53543	20	3.3			22	33
AOL		-14.6	19			23	8.4

Long Wavelength VCSEL

Analog Photonics

Thomas Berenz, MPIfR Bonn

Phase and Amplitude Stability

für Radioastronomie

Analog Photonics

Thomas Berenz, MPIfR Bonn

Phase and Amplitude Stability

Analog Photonics

Thomas Berenz, MPIfR Bonn

COTS Analog Optical link: TX & RX

INAF

Stability: fiber / coax comparison

•

INAF

AOL: discussion and conclusion

Measured performance:

	Link Gain (dB)	IMF2 @ 1 GHz (dB)	IMF3 @ 1 GHz (dB)
External modulation AOL	-14.6	-	53
Direct modulation AOL	-27	47	49

- Higher frequencies / longer distances: AOLs most attractive
- AOLs are have a have a better phase and gain stability compared to coax cable links
- AOL noise figure
 - High with respect to *kTB*
 - Thanks to the high gain in front of the AOL, system noise figure is much lower.
- Further work:
 - Lower power consumption component (VCSELs) tests
 - Lower cost AOLs
 - Continued testing of novel AOLs in existing radio telescope systems

AST(RON

Netherlands Institute for Radio Astronomy

ASTRON AOL costs

Lasers

Supplier	Component ID	P _{opt. max}	RIN	λ	Linewidth	Costs		Туре	Comment
		(m\\/)	(dB/Hz)	(nm)	(MHz)	Euro	US Dollar		
		((((*)))	(00/112)	(1117)	(11112)	Luio	Donai		
Oclaro	LC95A76ULR	250		976	4500			CW	
CIP	DFB-080-XXX	80	-150	1550	1			CW	CIP gets its DFBs from EM4
EM4 Inc.	EM253	100 - 120	-170	1550	1	974	1550	CW	
Ortel / Emcore	1772-NM-63-02-FC-PM	63	-163	1550	1	1485		CW	
Lumics	LU1064M150	150		1064	30			CW	
Toptica	DFB	60		1550	5			CW	Reseller of these components
Toptica	DFB	140		970	5			CW	
Supplier	Component ID	P _{opt. max}	RIN	λ	Bandwidth	Co	sts	Туре	Comment
		(mW)	(dB/Hz)	(nm)	(GHz)	Euro	Dollar		
OEQuest	LDM5S515-005	2	-150	1550	2.5		125	DML	
OEmarket	LDM1550	4	-150	1550	2		199	DML	Measured bandwidth 9 GHz
	LDM-C	3	-150	CWDM grid	2.5		239	DML	CWDM laser

RON AOL costs

Modulators

451

Supplier	Component ID		Vπ	Po	p-in	Prf	-in	Δν	IL	Wavelength	LinkGain	Price
		(V)	@ v	(dBm)	(mW)	(dBm)	(mW)	(GHz)	(dB)	(nm)	(dB)	(Euro)
Photline												
	MXAN-LN-10	5.1	50kHz	23	200	28	631	12	4 dB	1480 - 1600	0,4	1680
	NIR-MX-LN	4.0	50kHz	20	100	28	631	12	5.0 dB	980 - 1064	-5,5	
JDSU												
	APE Microwave Anolog Intensity Modulator	6.0	1 GHz		200	27	500	9	5.0 dB	1540 - 1560	-3	2615
	2.5 Gbps bias free Miniaturized Modulator	3.7	100 kHz		100*	24	250	3	5.0 dB	1535 - 1565	-4,8	
	2.5 Gbps Bias-free Modulator w. Attenuator	3.7	100 kHz		100*	24	250	3	6.5 dB	1535 - 1565	-7,8	
<u></u>												
Crisel Instruments												
	Standard, 1550nm, 18GHz	5.0	1 kHz		300		300	20	5.0 dB	1530 - 1570	2,1	3750
	Standard, 1060nm, high extinction ratio	4.1	1 kHz		100		300	5	4.5 dB	1040 - 1070	-4,7	
	Linearised modulator	5.5	1 kHz		100*			20	7 dB	1530 - 1570	-12,3	
	Custom AM1550	3.5	2 GHz		150			2	4	1550		
EOSpace	10-20 Gb/s Z-cut Modulator	3	1 GHz		100*			12.5	3 dB	1550	0.9	
	10-20 Gb/s X-cut Modulator	4	1 GHz		100*			12.5	4 dB	1550	-3,5	
Sumitomo												
	2.5Gbps Bias Free IM	4.5	2 Gb/s		20				5.5 dB	1530 - 1570	-21,5	
Covega												
	LN058	3.5	20GHz		100*				5.5 dB	1525 - 1605	-5,3	
Avanex										4505		
	PowerLog FA-20	4	1 kHz		100	28		12	3.5 dB	1525 - 1615*	-2,5	
	PowerLog AM-20	5	1 kHz		100	25		20	4.5 dB	1615 *	-6,4	
Lumera										1520		
	20Gbps polymer IM	1.1	3 kHz		100*			16	11 dB	1610	-6,3	

ON AOL costs

Detectors

Supplier	Component ID	Popt, max	Responsivity	λ	Bandwidth	Co	sts	Comment
		(mW)	(A/W)	(nm)	(GHz)	Euro	Dollar	
OEmarket	PD-20	2	0.85	1250 - 1600	2	35		
	PD-A-30		0.95	1100 - 1650	3	32		
	Bookham PT10G	10	0.8	1310 - 1575	11.5		590	With transimpedance amplifier
	PD-50	3	0.95	1100 - 1650	5	56		
Go4Fiber	GDCS985	3	0.90	1100 - 1650	3		80	
	Emcore R2860E	2.5	0.8	1280 - 1580	9		99	With transimpedance amplifier
	Agere R2560A	16	0.8	1500 - 1600	13		900	
er: 0.06	Euro / meter			ice per meter (Euro)			./	

Number of fibres

Optical Analog Link Technology for the SKA - Peter Maat – ASTRON

AOL Power Consumption

• External modulation AOL

ASTRON

Component	Туре	Subsection	Voltage	Current	Power	Comment
			(V)	(A)	(W)	
CW Laser	EM4, AA1406					
		Laser Chip	3	0.55	1,65	
		TEC	< 3	< 3	9	
		Thermistor	< 5	< 0.0005	< 0.0025	
Modulator	Photline, MXAN LN10					
		Modulator Chip	< 20	< 0.0002	< 0.0004	
		Monitor Diode	< 5	< 0.0035	< 0.02	
Detector	Agere, R2560A		15	< 0.013	0	
RF amplifier	MGA-53543		3.3	0.03	0.1	

Direct modulation AOL

Component	Туре	Subsection	Voltage	Current	Power	Comment
			(V)	(A)	(W)	
Laser	LDM1550		1	0.02	0.02	
Detector	PD-50		3	0.001	0	
RF amplifier	MGA-53543		3.3	0.03	0.1	Two amplifiers are needed

Comparison electronic / photonic

• Performance comparison: attenuation vs. frequency

ON

ASTR

Comparison electronic / photonic

• Performance comparison

ASTRON

Unit Manufacturer Radiall Huber & Suhner Micro-coax Type SHF5OD low loss S04212 B low loss UFF092F low loss Material Silver, copper, Silver, copper, SPE Silver, copper, PTFE PTFE 0.26 / 0.61 / 1.1 0.3/0.8/1.5 0.76/1.7/3.2 Insertion loss at 1/5/15 GHz dB/m connector connector connector/soldering Connection type Cable diameter 6.25 5.30 2.34 mm 25 53 Static bend radius 3.18 mm 106 Dynamic bend radius mm -Weight 78 41 16.4 g/m %/°C 0.2 Loss vs. temperature Phase change vs. bending °/360° < 0.4 < 2 Phase stability vs. < 1 °/m/GHz < 1500 PPM (0°C - 90°C) (0°C - 70°C) temperature

	Unit		Remark	[
Insertion loss	dB/km	0.25	@ 1550 nm	
Connection type		Connector, splice		
Cable diameter	mm	0.125	Without mantle	
Bend radius	mm	10	Spec.: ITU-T G.657	
Weight	g/m	0.1	$\rho_{glass} = 2500 \text{ kg/m}^3$	
Loss vs. temperature	%/°C	0		Fibei
Phase change vs. bending	°/360°			
Phase stability vs.	PPM	< 595	between 0°C - 70°C, $\alpha_{glass} = 8.5 °C^{-1}$	
temperature				

Coax