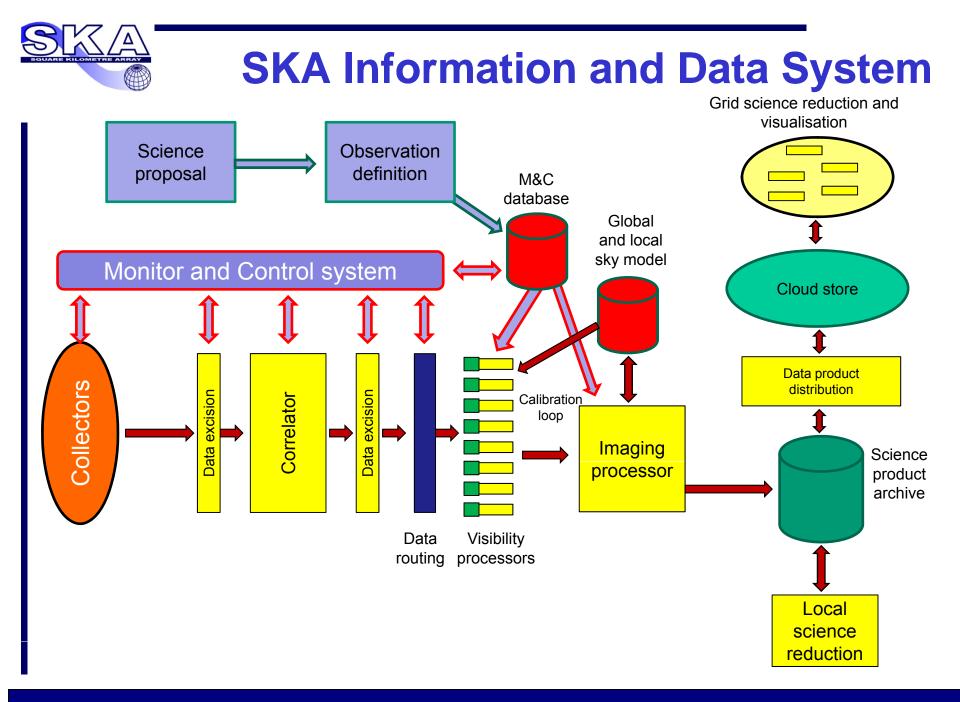


WP 2.6.5 SKA Data Products, storage

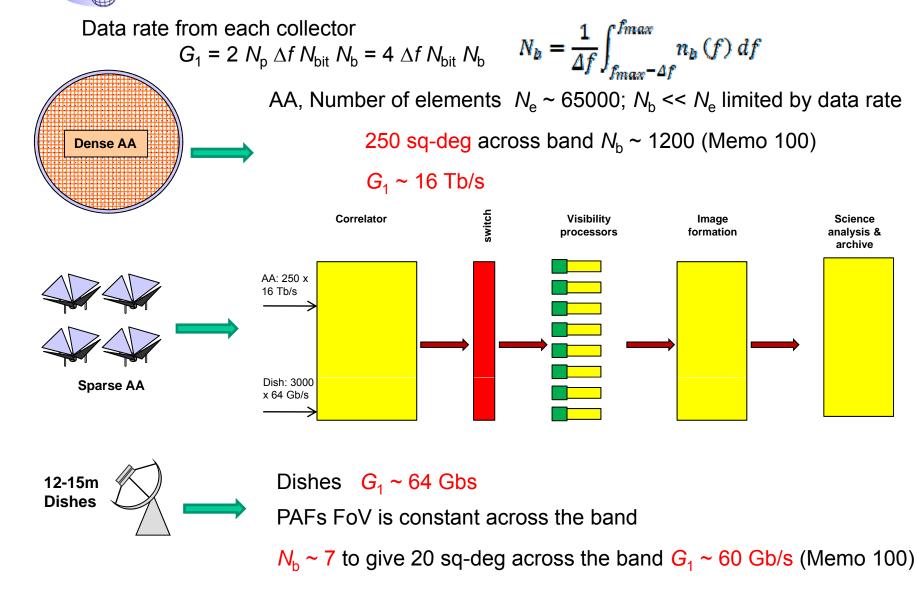
Paul Alexander

WP2 Meeting 2010

WP2.6.5 SKA Data Products and Flow


- Addressing data products, data storage and distribution
- Deliverables: elicit and document requirements for
 - Data products including data visualisation
 - Data storage what data can be stored
 - Data distribution -
- Approach
 - Detailed analysis as required by DoW in the context of

Overall System View of Information and Data Flow – essential to establish requirements



Participants and activities

- University of Cambridge
 - Data system design; data product definition; Hardware/software architecture
- ICRAR
 - Data system design; Database design; Data product definition; Hardware/software architecture
- University of Calgary
 - CyberSKA; data distribution model; data visualisation
- ASTRON
 - Data storage; Hardware/software architecture
- JPL
 - Visualisation and data handling
- SKA-NZ
 - Hardware/software architecture

Data rates to the correlator

WP2.6.5 SKA Data Products and Flow

Data rates from the correlator

• Standard results for integration/dump time and channel width

$$\frac{\delta t}{s} = a_t \frac{D}{B} \sim 1200 \frac{D}{B} \qquad \qquad \frac{\delta f}{f} = a_f \frac{D}{B} \sim \frac{1}{10} \frac{D}{B}$$

Naive data rate then given by

$$G = g(B) \frac{1}{2} N^2 N_p^2 N_b \frac{1}{\delta t} \frac{\Delta f}{\delta f} 2N_w \qquad G = g(B) N^2 N_w N_p^2 N_b \frac{1}{a_t a_f} \left(\frac{B}{f} \left(\frac{B}{D}\right)^2\right)$$

 Can reduce this using baseline-dependent integration times and channel widths

$$G = N^2 N_W N_p^2 N_b \frac{1}{a_t a_f} \frac{\Delta f}{f} \int_0^B n(b) \left(\frac{b}{D}\right)^2 db$$
$$= N^2 N_W N_p^2 N_b \frac{1}{a_t a_f} \frac{\Delta f}{f} \left(\frac{B}{D}\right)^2 \int_0^B n(b) \left(\frac{b}{B}\right)^2 db$$

Δ

SKA₂ data rates from the correlator

Experiment				3000 Dishes + SPF		1630 Dishes + PAFS		250 AA stations	
Description	B _{max} (km)	Δf (MHz)	f _{max} (MHz)	Achieve d FoV ¹	Data rate (Tb/s)	Achieved FoV ¹	Data rate (Tb/s)	Achieved FoV ¹	Data rate (Tb/s)
Survey: High surface brightness continuum	5	700	1400	0.78	0.055	15	0.11	108	0.03
Survey: Nearby HI high res. 32000 channels	5	700	1400	0.78	1.0	15	2.0	108	2.6
Survey: Medium spectral resolution; resolved imaging (8000)	30	700	1400	0.78	1.2	15	2.4	108	5.4
Survey: Medium resolution continuum	180	700	1400	0.78	33.1	15	66	108	14.1
Pointed: Medium resolution continuum deep observation	180	700	1400	0.78	33.1			0.78	0.15
High resolution with station beam forming ²	1000	2000	8000	0.0015	33.4				
High resolution with station beam forming ³	1000	2000	8000	0.0015	429				
Highest resolution for deep imaging ²	3000	4000	10000	0.001	391				

Notes

- 1. Achieved FoV is at f_{max} and has units of degrees squared. For the AA and PAFs we calculate the data rate assuming it is constant across the band.
- 2. Assuming that for the dynamic range the FoV of the station only has to be imaged
- 3. Assuming that for the dynamic range the FoV of the dish must be imaged

- AA Line experiment 50 AA-low stations
 - 100 sq degrees
 - 10000 channels over 380 MHz bandwidth

➢ 3.3 GS/s

- Dish Line experiment 300 15-m dishes
 - 0.5 sq degrees
 - 32000 channels over 1 GHz
 - ≻ 6.1 GS/s

WP2 Meeting 2010

Where does the data rate drop?

For SKA₂

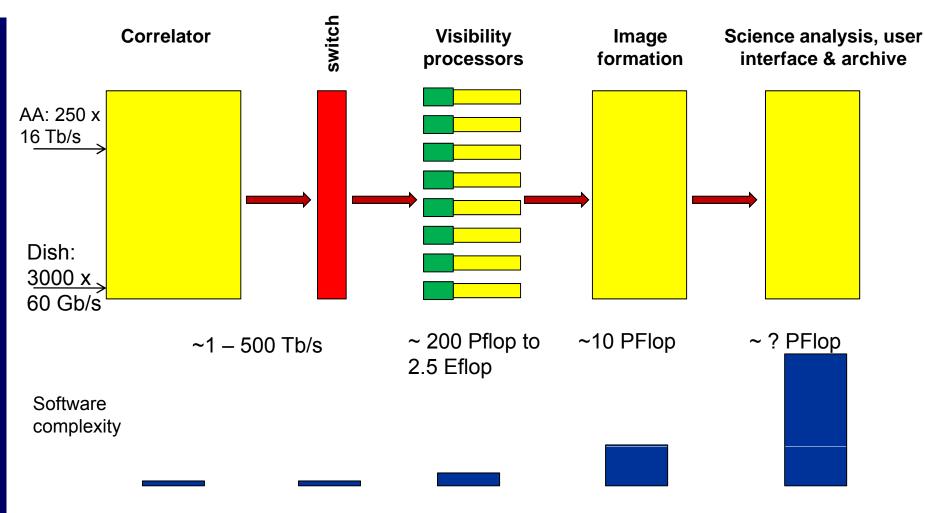
Data rate out of correlator exceeds input data rate for 15-m dishes for baselines exceeding ~ 130km (36km if single integration time)

At best for dishes output data rate ~ input; AA's reduction by ~ 10^4

Image size: $a^2 N_{ch} (B/D)^2 N_b$ Ratio UV to "image" data

$$\sim 0.06 \, T_{obs} \, N^2 g(B) \frac{\Delta f}{f} \frac{1}{a_c a_f} \frac{1}{a^2} \frac{N_p^2}{N_{ch}} ~~ \sim 210 \, \left(\frac{T_{obs}}{1 \mathrm{min}}\right) \left(\frac{N}{1000}\right)^2 \left(\frac{N_{ch}}{32000}\right)^{-1}$$

Major reduction in data rate occurs between UV data and image data


WP2.6.5 SKA Data Products and Flow

Post Correlator UV data Requirements

- Define UV data requirements from DRM
 - Good progress for SKA₂ DRM
 - Need to refine integration times and channel widths based on calibration understanding (↓), FoV shaping etc. (↓), RFI excision (↑)
 - Need SKA₁ DRM
- Persistence of M&C and flagging data associated with UV data
 - Current model quite traditional
 - Need to elicit information on all current approaches
- Embarrassingly parallel need to consider performance of distributed file systems and data formats to obtain good performance

SKA The SKA Processing Challenge

Model for SKA₁ UV processor

- Highly parallel consider something achievable NVIDIA promises 20
 TFlop in 2 years assume 50 Tflop in 2018 timeframe
- Approximate analysis of ops/sample: 200,000/calibration loop, 10⁶ total
- 5 calibration loops, 20% efficiency,
- each processor processes ~ 0.01 GS/s of data
- Requirement: ~ 6 PFlop
- Buffer 1 hr of data therefore we need to buffer 100 GB in a fast store
- Require ~ 600 Blades, assume : €2000 per blade

- AA-low 100 sq degrees spectral line cube
- 20km baseline at 300MHz \rightarrow resolution ~ 8 arcsec resolution
- $\sim 1.5 \times 10^8$ pixels; 1000 channels
- Volume size ~ 1.5×0^{11} voxels
- Data set size ~ 1 TB

Final data product ~ 1 TB

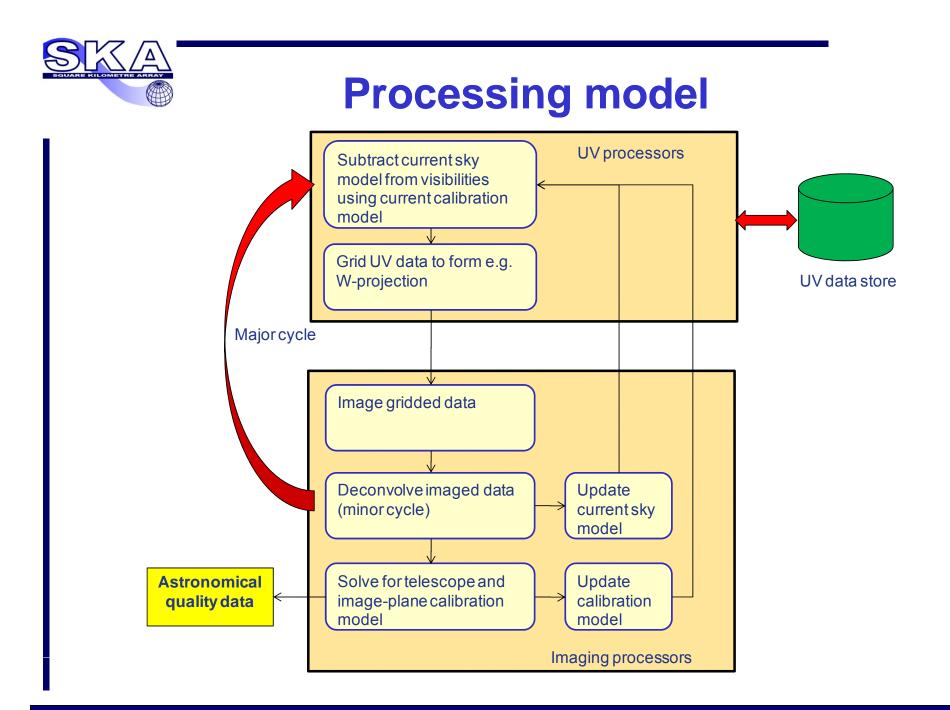
WP2.6.5 SKA Data Products and Flow

Science Data Products

Experiment	Tobs	<i>B</i> /km	D/m	N_{b}	N _{ch}	$N_{ m v}$	Size / TB
High resolution spectral line	3600	200	15	1	32000	5 10 ¹³	200
Survey spectral line medium resolution	3600	30	56	1000	32000	8 10 ¹³	330
Snapshot continuum – some spectral information	60	180	56	1200	32	7 10 ¹²	30
High resolution long baseline	3600	3000	60	1	4	$7 \ 10^{14}$	360

- $\sim 0.5 10 \text{ PB/day of image data}$
- Source count ~10⁶ sources per square degree
- ~10¹⁰ sources in the accessible SKA sky, 10⁴ numbers/record
- ~1 PB for the catalogued data

100 Pbytes – 3 EBytes / year of fully processed data



- Essential to adopt a full systems-based approach to analysing the data flow and requirements
- Good initial progress defining intermediate and science data products, but need SKA₁ DRM to be definitive
- System model assumes highly parallel data model
 - □ Work needed to define better this intermediate data model
- Data distribution and visualisation
 - □ See separate CyberSKA talk
- No work yet on DB or archive aspects of requirements

Paul Alexander

WP2 Meeting 2010

WP2 Meeting 2010

WP2.6.5 SKA Data Products and Flow