

CyberSKA

Cyberinfrastructure for Radio Astronomy

(http://www.cyberska.org)

Cameron Kiddle
Research Fellow, Grid Research Centre, University of Calgary
Technical Coordinator, CyberSKA

What is CyberSKA?

- Initiative to develop a scalable and distributed cyberinfrastructure platform to meet evolving science needs of the SKA
- Led by the University of Calgary with several partner institutions from North America currently
- Canadian funding for CyberSKA provide by CANARIE, as part of their Network Enabled Platforms (NEP) program, and Cybera
- Starting by establishing cyberinfrastructure to support current large-scale astrophysical data needs generated by GALFACTS, PALFA and other high data volume SKA Pathfinder projects

Project Team

CyberSKA

CALCARY University of Calgary

- •Russ Taylor (Professor, Lead PI)
- •Eric Donovan (Associate Professor)
- •Robert A. Este (Project Manager)
- Cameron Kiddle (Technical Coordinator)
- Mircea Andrecut (Developer)
- •Roger Curry (Developer Grid Research Centre)
- Pavol Federl (Developer)
- Arne Grimstrup (Developer)
- Sukhpreet Guram (PhD Student)
- Paolo Pragides (Developer)
- Dina Said (PhD Student)
- Christian Smith (System Administrator)
- •Tingxi Tan (Developer Grid Research Centre)

McGill

McGill University

- Victoria Kaspi (Professor)
- •Rafal Klodzinski (Developer Sequence Factory)
- Patrick Lazarus (MSc Student)
- •Shibl Mourad (President Sequence Factory)
- •Alex Samoilov (Developer Sequence Factory)

University of British Columbia

- •Ingrid Stairs (Associate Professor)
- •Bryan Fong (Developer)
- Mark Tan (Developer)

University of British Columbia, Okanagan

- Erik Rosolowsky (Assistant Professor)
- Venkat Mahadevan (Developer)

Cornell University

- •Jim Cordes (Professor)
- •Adam Brazier (Research Associate)
- •Shami Chatterjee (Research Associate)
- Eric Chen (Analyst Consultant)

IBM Canada

- •Don Aldridge (General Manager, Research & Life Sciences)
- Olivier Eymere (IT Architect)

National Research Council Canada

- •Tom Landecker (Principal Research Officer)
- •Tony Willis (Senior Research Council Officer)

Current Usage

- ~100 members from around the world
- 10+ groups (GALFACTS, PALFA, EVLA, GMRT, CASA Users...)

Requirements

Distributed

- provide access to distributed data, computing resources and services

Scalable

must be able to scale to support increasing data and processing needs

Deployable

 different sites should be able to deploy developed tools and participate in CyberSKA relatively easily

Heterogenous

 provide a framework to enable interaction with different types of data, computing resources and services and to add/execute different processing algorithms and workflows

Automated

 Automation and dynamic reconfiguration of services and data workflows in response to user demand, changing user objectives, available data and resource availability

Requirements - II

Transparent

 provide users with transparent access to data, computing resources and services

Web-enabled

a Web-based platform that users can access from anywhere with Internet access

Collaborative

enable international/distributed teams to collaborate and communicate effectively

Interactive

enable on-line interactive visualization of data

Auditable

be able to track where data has come from and processes applied to it (data provenance)

Interoperable

compliant with existing standards such as Virtual Observatory (VO)

Experience/Background

- Leveraging knowledge and experience of the Grid Research Centre at the University of Calgary, IBM, and a large technical team
- Adapting, customizing and extending technologies used by GeoChronos (http://geochronos.org)
 - a platform developed by the Grid Research Centre
 - enables Earth observation scientists to access and share data and applications and collaborate more effectively
 - employs social networking, cloud computing and data management technologies
- Making use of other existing tools and technologies where possible

Why social networking?

 can enhance collaboration capabilities around data and applications - "Facebook for Scientists"

Facebook analogy

- a platform dealing with large scale in terms of users, data and applications
 - > 500 million users (50% log on to Facebook on any given day)
 - > 30 billion pieces of content shared each month
 - > 550 thousand applications on Facebook Platform

System Context Model

High Level Architecture

Logical Operational Model

Solutions - Collaboration

- Portal (<u>http://www.cyberska.org</u>) built on top of the Elgg open source social networking platform
 - provides many Facebook-like features including: tags, bookmarks, profiles, blogs, wikis, friends/contacts, groups, media/document sharing, discussions, message boards, calendars, status, activity feeds

Solutions - Data

- **CyberSKA**
- Access/download data for selected parameters and region of interest
- Requested data generated in virtualized Condor pool on server side

Solutions - Data II

CyberSKA

Distributed data management service

- -built on iRODS (Integrated Rule-Oriented Data System)
- -running at two sites currently (University of British Columbia Okanagan & University of Calgary)
- -PostgreSQL database for image metadata (Adherent to VO metadata standards)
- -query service with RESTful API (spatial, temporal and spectral queries supported)
- -supports mosaicing of images returned by query

Solutions - Visualization

On-line visualization of multidimensional FITS files:

- Supporting: interactive panning & zooming, histogram correction, color map adjustments, display pixel data value, multiple coordinated systems, grids, selection of frame for multi-dimensional images

CyberSKA

Solutions - Applications

- API for integrating third party / remotely hosted applications
- Single sign-on to applications enabled using OAuth

Next Steps

Infrastructure

- Acquisition of hardware at participating sites to establish prototype testbed
- Set up cloud computing environments and key services at each site
 - Cloud platforms under consideration include ASPEN, Eucalyptus, Nimbus, OpenStack

Collaboration

- Refinement and development of collaboration features based on user feedback

Data Management

- Expansion of distributed data management system to other sites
- Better integration of data management system with other CyberSKA tools and services

Data Visualization

- Provide server side support and improve scalability

Data Processing

- Establish dynamic batch based processing and interactive service environments on cloud platform
- Establish framework for adding and integrating different processing algorithms and workflows

Applications

- Extension of third party application API to enable two way interaction between portal and applications (i.e. pull data/information from portal, push news feeds to portal based on application activities)

Contact Information

CyberSKA

Portal: http://www.cyberska.org/ E-mail: info@cyberska.org

