NRC·CNRC

Transient SWG Summary

Michael P. Rupen for the Transient SWG sub-group NRC-Herzberg Astronophysics SKA KSP Workshop, 24-27 August 2015

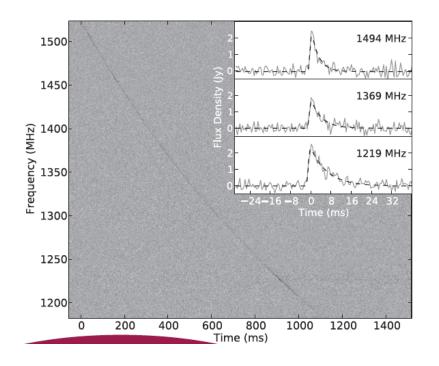
National Research Conseil national de recherches Canada

Key Science Projects

- Looking back in time: fast radio bursts ...single-pulse searches "all the time"
- The power of gravity: accretion-powered explosions ...multi-wavelength light curves of explosive events
- Exploring the fourth dimension: the variable radio skysurveys optimized to find variable sources

General points

- Naturally commensal with almost everyone
- Variability database: light curves for all variables and expected variables
- Strongly support free & open access to data & to observing schedules
- **Subarrays** are a game-changer for transient science
- Low-power mode for single-pulse searches
- Assign **urgency** as well as priority
- Should establish formal SKAO-level connections with other observatories & experiments
 - Possibility of synchronized telescopes shadowing SKA1



Looking back in time: fast radio bursts

- Understand the nature of FRBs extreme physics
- Trace parent population(s) (e.g., star formation)
- Shine a light through the distant universe
 - Dispersion measures
 - Scattering
 - Absorption
 - etc.

NC.CNC

Finding FRBs

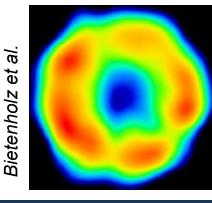
- Fast (milliseconds) transients
 - \rightarrow found via single-pulse searches using pulsar search beams
- Isotropic, with more at high latitudes
 →Commensal with almost everything
 →Some preference for high latitudes
- Rare; unknown spectra
 - →wide-area surveys & low frequencies (LOW, MID B1-B2)
 - Search single pulses during ALL other observations low-power mode for pulsar search?
 - →Dig down into the noise: store statistics of +/- pulse candidates, not just clear detections

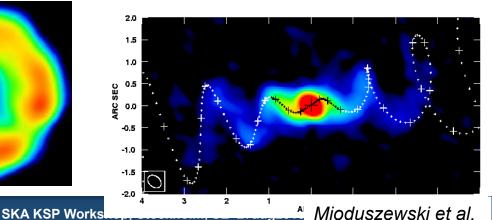
Enabling FRB science

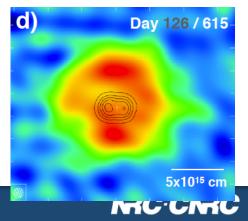
- Good positions essential (to identify counterparts/hosts)
 - Sub-arcsecond →62 km / freq_GHz would like at least some long baselines, in same subarray as pulsar search beams
 - Trigger dump of transient buffer (station/antenna data) covering full burst
 - →Store time series of images covering the tied-array beam
- Simultaneous observations very useful (afterglows)
 →synchronized O/IR/X-ray (cf. MeerLicht, Desert Transient P...)
 →publicly-accessible SKA schedules

Knock-on benefits

- Some long baselines during pulsar search
 →Instant positions for bright pulsars
 →Needed for LOW self-cal???
- Triggered dump of transient buffer
 →Instant positions for other fast transients RRATs, giant pulses, etc.
- Simultaneous O/IR observations covering many square degrees
 - \rightarrow Nice for all variables
- Publicly (automatically) accessible SKA schedules
 - \rightarrow Helpful for all multi-wavelength observations




Accretion-powered explosions



The power of gravity: accretion-powered explosions

- CVs, novae, NS/BH binaries, supernovae, TDEs, AGNs, GRBs
- Physics of accretion/outflow
 - Explore M, Mdot, angular momentum, accretion mode [wind/disk], magnetic field, nature of compact object, ...
- Extreme physics
 - relativity, gravity, pressure, neutron star eq'n of state, ...
- Physics of shocks & particle acceleration
 - Synchrotron, gamma-ray prod'n, interactions with CSM/ISM, ...

Explosive observations

- Targeted observations
- External or internal triggers (from any wavelength)
 - →VOevents
 - →Rapid response: over-rides
 - →Separate urgency from priority
 - →Faster response (<10s) for LOW
- Properly sampled, complete radio light curves
 - Observer-specified cadence, with +/- allowed
 - Automated schedule block generation
 - →Separate urgency from priority

→Automated response based on past, current, predicted behavior

Explosive observations

Subarrays are a game-changer for transient science

- : Multiple simultaneous observing bands (MID-B5 the workhorse)
- : Efficient, commensal: fully-sampled and complete-life light curves
- : We want the long baselines many others dislike
- : Continuous light curves (within a SB)

Explosive science

- Multi-wavelength essential (for both triggers & follow-up)
 →Public observing schedules
 - \rightarrow Local synchronized telescopes
 - →Allow for **fixed-time scheduling**
 - →SKA-level agreements with other telescopes & experiments
 - simultaneous, contemporaneous, collaborative observations
 - multi-telescope proposals (check boxes)

→Dedicated SKA liaison

Imaging vital to interpretation

\rightarrow Long baselines

→Simultaneous/contemporaneous radio imaging (VLBI et al.)

 \rightarrow Useful to allow for imaging adjacent to variable & strong sources

Explosive science

- Public access to data (à la Swift)
 - → Public database with light-curves, including all observations of:
 - near real-time updates
 - new variables
 - classes expected to be variable (e.g., CVs, novae, XRBs, FRBs, ...)
 - "trigger criteria" attached to each source (default + proposal-driven)
 - access to specific entries could be restricted according to proposals (mostly PI-driven)

...many benefits, including also intelligent triggers based on unusual behavior

 \rightarrow No proprietary period for (most) transients/variables

...reference is to an overview paper, or in acknowledgements

NRC·CNRC

Explosive science

- Advance agreement on "ownership" (if any)/authorship
 - \rightarrow SWGs to negotiate/propose a standard
 - \rightarrow Could be modified by individual KSP or PI proposals
 - ...many examples to consult: *Swift*, *MAXI*, *RXTE*, SDSS, LSST, precursors, etc.
- Lots of commensal opportunities

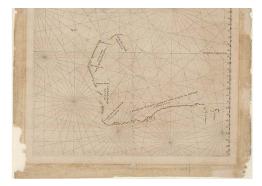
Knock-on benefits

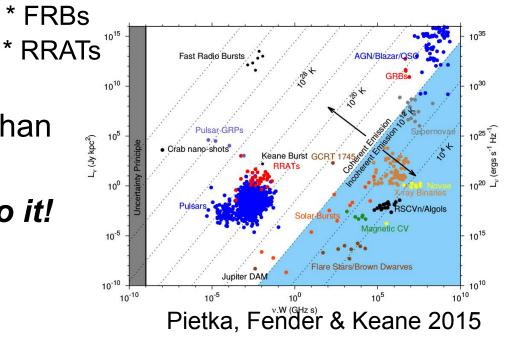
- Urgency parameter
 - More efficient use of telescope
- Subarrays
 - · Less intrusive, easily commensal
 - More efficient use of telescope
- Automated schedule generation
 - Essential for us, but good for everyone
- Common proposals
 - Makes SKA more accessible \rightarrow expands SKA user base
 - Top-level agreements make SKA (even) more visible

Knock-on benefits

- Open-access schedules
 - make simultaneous and contemporaneous observations easy
- Open-access light curves & ancillary data base
 - More efficient use of telescope: choose observing time and cadence based on historical data and current flux density/spectrum
 - Expands SKA user base
 - Very appealing to public (e.g., amateur observers)
 - Great for everyone: source subtraction, calibration, QA, other primary science (brown dwarfs etc.), ...
- Suitable for early science & commissioning

The Variable Radio Sky




Exploring the fourth dimension: the variable radio sky

* Gamma-ray bursts

- Surveys optimized to find variable sources
- Explore the unknown, find the unexpected
- Previous examples:
 - Pulsars
 - X-ray binary jets
 - Tidal destruction events
 - Stellar radio emission
- The universe is smarter than we are...

...we should listen to it!

NCCNC

Anticipating the unexpected

- Returning to a given piece of sky
 - Blind surveys
 - Unique places (e.g., Galactic bulge, nearby galaxies, our neighborhood)
 - →Commensal with virtually all other deep fields & surveys
- Repeated visits
 - Variability timescales are minutes to years, with recurrence times of hours to millenia
 - \rightarrow logarithmic cadence with no special start time: e.g.,

 $0.1 - 1 - 1.1 - 5 - 5.1 - 6 - 6.1 - 10 - 10.1 - 11 - 11.1 - \dots$ days

Anticipating the unexpected

→SDP should check for variability on many timescales (1sec, 5sec, 30sec, 1min, 5min, 10min, 1 hr, 5 hr, 10hr?)

- Produce external or internal triggers
 - →SDP should report variability within N x the variability timescale, with N 3-10 (TBC)
 - →Alerts
 - →VOevents
- Synchrotron, coherent, and thermal sources
 - MID-Band 5 useful in spanning (and distinguishing between) all three
 - Other bands also have advantages (e.g., field-of-view)

Anticipating the unexpected

- Variability generally implies small & possibly absorbed
 - Long baselines most useful
 - May want high-res'n images (i.e., toss large-scale structure)
 - Wide frequency range helpful
 - Separating short and long baseline variability distinguishes ISP from source variability
- Response to a trigger
 - Automatic classification & response based on spatial coincidence, flux density, flux behavior, etc.
 - \rightarrow High-res'n or multi-band follow-up
 - →Subarrays very useful here

22

General Thoughts

For the SKAO

- Need to move on to concrete numbers
 - Exposure Calculator would be very useful
- Don't change the telescope unless it's essential
- Too early to opt for surveys over KSPs
- Eager to help with design/ConOps questions

...but would like clear feedback and continued discussion, not a onetouch consult or review

- Matrix of KSP & survey parameters would be great
- Strongly encourage inviting non-radio observers & theorists
 - Multi-messenger transients: physics community too

Commensality with other KSPs/SWGs

- Will develop a (short!) document on "best practice" to allow transient/variable source science
- Main discussions have been:
 - Cadence
 - Use of subarrays (mostly by baseline length)
- Designated ambassadors/contacts for the other SWGs?
 - Some SWGs have joint membership
 - Could have transient SWG folks, or just use the chairs comments?

Commensality: (important!) technical details

- Lots of interest in zoom + higher-res'n continuum
- Need to sort noise diode question determines whether pulsar folks can observe with anyone else

Next steps for Transients SWG

- Report to & discuss with SWG
- Set up wiki
- Develop best-practices document
- Use cases
- L1 suggestions
- SDP product definitions
- Start in on real numbers for KSPs
- Work with other SWGs on policy on cross-KSP conflict resolution

General points (reprise)

- Naturally commensal with almost everyone
- Variability database: light curves for all variables and expected variables
- Strongly support free & open access to data & to observing schedules
- Subarrays are a game-changer for transient science
- Low-power mode for single-pulse searches
- Assign **urgency** as well as priority
- Should establish formal SKAO-level connections with other observatories
 - Possibility of synchronized telescopes shadowing SKA1

