Possible Key Sciences in SKA-VLBI

For spectral lines

Hiroshi Imai

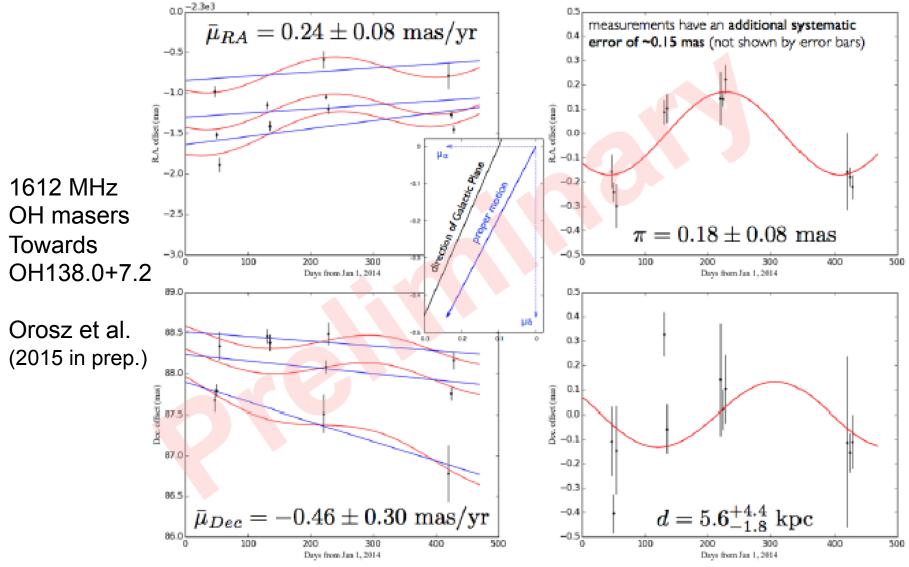
Graduate School of Science and Engineering, Kagoshima University

On behalf of the SKA VLBI Working Group

The SKA Key Science Workshop @Stockholm 24 August 2015

Targets of KSPs in SKA-VLBI

❖ Ultimate angular resolution (~1 mas) and astrometric accuracy (~a few µas)


→ See Ivan Agudo's talk (compact continuum sources)

- Big and a large variety of samples of sources
 - ~10 000 possible target maser sources
- Specific to spectral line VLBI (SKA1-MID)
 - Targets
 - Non-thermal emission: masers
 - Absorption with thermal sources with compact backgrounds
 CH, OH, CH₃OH, H₂CO, HC₅N, C₄H, CCS, (H₂O, NH₃), ...,
 HI, radio recombination lines (RRLs)
 - Techniques: free from dilution effects
 - 3D velocity fields (with I.o.s vel.), velocity drifts (acceleration)
 - Polarimetry: Zeeman splitting (Robishaw et al. AASKA15_110)

sub-mas annual parallax of OH masers

3

The SKA Key Science Workshop @Stockholm

Galactic and extragalactic targets — The Milky Way and the Local Group —

4

Dynamics (astrometry)

- Milky Way spiral arm tomography (see Mark Thompson's talk)
 sequence of stars in different stages and locations in spiral arms, σ_D~10 pc@1kpc
 - Bulge: testing coevolution with the central massive black hole
 - Local Group dynamics (orbital determination of the satellite gals.)

Magnetism (polarimetry)

- Macroscopic: Galactic scale (e.g. along disks)
- Microscopic: Individual sources:

mass accretion and jets around young and dying stars

- ❖ Interstellar turbulence (astrometry and source mapping)
 - Macroscopic (irregular motions): super bubbles, cloud collisions, etc.
 - Microscopic:
 - seeds (tiny structures): as building blocks of molecular gas clumps/cores
 - <100 AU, seen in absorption or scintillation</p>
 - shocks, vortices: points of turbulence dissipation
 - <1 AU, seen in maser regions</p>

Galactic and extragalactic targets

-External galaxies at nearby and cosmological distances-5

See Mark Sargent's talk

Starbursts and galactic evolution

- OH masers tracing sites of present-day massive-star formation
- CH₃OH masers as new probes of SFRs in external (nearby) galaxies (?)

(c.f. Chen et al. 2013)

❖ AGN diagnostics

- Process of mass supply from disks/tori down to super massive black holes (SMBHs) (<1 pc)
- Diagnostics of AGN systems (e.g. absorption systems)

Cosmology

- Masers used for determining cosmological parameters (e.g. H_0)
 - though geometrical parallax distances
- Mega-masers in the Hubble flow (D>30 Mpc)
 - Mega-maser Cosmology Project (Braatz et al.)
 - H₂O masers at z=0.66 (Barvainis et al. 2005)
- Mega-masers in gravitational lens systems
 - H₂O masers at z=2.64 (Impellizzeri et al. 2008)

Issues in spectral line SKA-VLBI

6

Spectral resolution

- 0.5 GHz BW/130k channels → 0.72 km/s @1.6GHz OK
- Narrower channel width for Zeeman splitting measurement
- Commensality: widely expected, but depending on
 - station beam size and beam numbers
 - common targets and fields:
 continuum VLBI, pulsars, Milky Way survey, AGN surveys, etc.

Synergy

- Between sciences in high and moderate angular resolutions (HI, molecular lines, etc.)
- Between different populations in common fields (objects in the Milky Way, AGNs)

Locations of VLBI antennas

100—3000 km from SKA1 core (for Galactic sources)

Conclusions

- Spectral line VLBI also well follows the strategy for continuum VLBI with the SKA.
- ❖ Tight association with other KSPs should be explored
- **❖** Specific features to spectral line SKA-VLBI are
 - Spectral resolution (for Zeeman splitting and analyses for ISM turbulence)
 - Array configuration (100—3000 km for Galactic sources)
 - Monitoring for astrometry and interstellar scintillation
 - VLBI correlation (with phase-up signals from the SKA core)
 - Off-line procedures of data reduction and analyses

Thank you!