Solar, Heliospheric and Ionospheric SWG

Divya Oberoi (NCRA-TIFR, India) div@ncra.tifr.res.in

Eduard Kontar (Univ. of Glasgow, UK) Eduard.Kontar@glasgow.ac.uk

Mario Bisi, STFC, UK

Liu Lijia, NAO, China

Dalmiro Maia, FCUP, Portugal

SKA SHI SWG

- Solar, Heliospheric and Ionospheric SWG
- Formally established in May 2015
- ~60 members; 22 Countries; 6 Continents
- Scientific Interests

Solar Spectrum

Characteristic frequencies and emission mechanisms

Plasma freq. $v_p \approx 9x10^3 N_e^{1/2}$

Free-free emission $v(\tau_{\rm ff}=1)\approx 0.5~{\rm N_e}~{\rm T_e}^{-3/4}~{\rm L}^{1/2}$

e gyro freq $v_B \approx 2.8 \times 10^6 \text{ B}$

Sample MWA Dynamic

(5

min)

Frequency (12 log-spaced groups of 2.56 MHz spanning 80 -300 MHz)

Key aspects to consider

- Very strong signal
 - Need solar attenuators? (esp. for higher SKA1-Mid bands)
 - Limited by 'source noise'
 - Calibration issues
 - Van-Vleck corrections become important
- Dynamic and spectrally complex
 - No time or frequency synthesis
 - Large computational load
 - Extraction of relevant information from images

Key aspects to consider...

- Emission at a large range of scale sizes (deg – arcsec) and complex morphology
 - An array configuration optimized for instantaneous and monochromatic imaging
- Emission mechanisms spanning a huge range in T_B (>10¹0 K)
 - Very high imaging dynamic range

Science Targets

- Quiet Sun
- Observations of QPOs
- Active region dynamics
- Particle acceleration
- Shocks
- Coronal heating

Heliospheric Science: The low-radio frequency advantage

- Propagation effects make excellent probes for the Corona and the Heliosphere
 - Interplanetary Scintillation (Ne fluctuations,

structure and dynamics not accessible by other means (micro-turbulence)

Transaction (Chief Representation (The strict of the str

Interplanetary Scintillation

- IPS (time series)
 - SKA1-Low multi-beaming capability
 - Commensal with day time imaging observations?
 - Real time data processing requirements
 - Time series with comparatively coarse time and freq resolution (~10ms, few MHz)
 - Subset of pulsar observing setup
 - Triggered and monitoring observations
- IPS in the image plane?
 - Recent MWA observations show evidence for IPS during night-time observations (ε>140°)
 Kaplan et al., 2015

FR: High risk but high returns

Figure 2. Figure 2 provides an overview of the expected magnitudes of RM due to the heliospheric, magnetospheric and ionospheric (and plasmaspheric) plasmas. The corresponding FR (in deg) at 150 MHz is also indicated. A range of a factor of two below and above the numbers computed in the text has been assumed where needed.

Impact of ionospheric propagation

- Refractive shifts and distortion in image plane
 - Gradients in Ne along the ray path
- Change in plane of linear polarization
 - Ne profile and component of B along LoS
- Need an independent measurement of Ne (GPS TEC)
 - Interferometric phase insensitive to total Ne
 - FR depends on the total Ne
- Attenuation
- Time and direction dependent
- Known spectral dependence

Refractive shifts due to VTEC

- 183 MHz, BW=30.72 MHz
- 30°x50° patch of sky
- 1.5 hr period (15 Oct, 2013)
 (21:45-23:18) local time
- ~1000 sources
- Arrows 50x actual refractive shifts
- 1°=10 km @ 600 km altitude Loi et al, GRL, 2015, 42,

Gradient field

- Reds Overdense
- Blues Underdense
- Height ~600 km
- First direct detection of field aligned plasma ducts connecting plasmasphere and ionosphere using the MWA

Commensal Observations

- Ionospheric Science
 - All SKA1-Low observations
- Heliospheric Science
 - Likely all SKA1-Low observations (ORT catalogue ~3000 sources).
- Solar Science
 - None for SKA1-Mid
 - Probably none for SKA1-Low
- Strong overlap/Commanalities
 - Techniques and tool kits
 - Data products from other KSPs/SWGs

Observing Needs

- Monitoring observations
 - Sun and Heliosphere
- Ability to respond to triggers (order ~min)
 - Satellite based (X-ray flares, Coronagraphs)

Activities of the SHI SWG

- Monthly telecons
- A list of science objectives and volunteers identified for writing 'use cases' for each of them.
 - Do we need any Engineering Change Proposals?
- Plan to feed them back to the SKA Project Office.

Use Cases

1. Solar Science

- Quiet sun, activity level threshold?, excluding known solar radio bursts (the emission outside active regions)
- 2. Quasi-periodic oscillations (MHD waves)
- 3. Relativistic (high energy particles), gamma-ray producing electrons (>100 keV)
- 4. Particle acceleration
- 5. Transport of Escaping electrons (type III)?
- 6. Type II shocks and CMEs
- 7. Active regions /coronal heating
- 8. Signatures of reconnection at radio frequencies (MHD scales of flaring)?
- 9. Long-term variability (evolution) of the solar radio emission

2. Heliospheric Science

- 1. Interplanetary Scintillation
- 2. Faraday rotation

3. Ionospheric Science

Conclusion

- High impact key science drivers
- Unprecedented range of complementary information from a host of other observatories
- A scientific community willing to put in the effort to pursue them
- Plan to engage with other SWGs and the SKA Project Office (esp. over the next few days)
 - Identify commonalities and areas of overlap
 - Feedback needs of SHI science to the SKA Project