

ACTIVE SIMULATION

Daniel Hayden

- Basic description
- Tool
- Process logic
- Example 1
- Example 2

Basic description

- Allows model execution of state machines, activities, interactions and parametrics
- Execution can occur along simulated time

Why do this?

 To validate the model by simulating triggers and seeing whether the modelled system responds as intended

Caveat

Only a subset of SysML elements is supported

Tool

- Cameo Simulation Toolkit
 - An package that needs to be bought and used in addition to Cameo Systems Modeller

Process logic (a 'non-exhaustive' description)

Example 1- Description (not in model)

- 1. A telescope operator changes several administrative states for a Dish
- 2. INFRA detects strong winds, leading TM to put a Dish into a stow-lock state

Citation: Dish state machines (draft) by Corrie Taljaard

http://mynutratek.com/blog/

Simulate triggers (signals)

- A similar sequence occurs for the block 'TM MID', which also owns a state machine
- The triggers for each of its transitions are also linked to activities

This results in:

New triggers can travel between structures through ports

The sequence of triggers:

'Enable Selection – Op' → 'Central Control – Op'

results in:

Then. The trigger:

'Strong Wind'

results in an interaction between the blocks 'INFRA SA', TM MID', and 'DISH MID'

which results in:

Example 2 (not in model)

- While the Dish is in stow-lock state, a systems engineer decides to do a cost rollup
- The systems engineer does this as follows:

 A reasoning pattern is defined by first creating a specific block and constraint block pair

A parametric diagram is then used to relate these two blocks

A PBS is then created, and the reasoning pattern is applied to this PBS

 An instance of this PBS is generated and cost values are specified for all component instances

«block»	
dish MID.spf receivers 1 : SPF Receivers	
exer unit 1_1 = dish MID.spf receivers_1.indexer unit 1_1 eiver pedestal unit_1 = dish MID.spf receivers_1.receiver pedestal unit_1 ecost = dish MID.spf receivers_1.subcost[1] ICost = 0.0	
«block» dish MID.spf receivers_1.receiver pedestal unit_1 : Receiver Pedestal Unit	
cost = 2.0 receiver / pedestal enclosure_1 = dish MID.spf receivers_1.receiver pedestal unit_1.receiver / pedestal enclosure_1 subcost = dish MID.spf receivers_1.receiver pedestal unit_1.subcost[1] stotalCost = 0.0 tranceiver module_1 = dish MID.spf receivers_1.receiver pedestal unit_1.tranceiver module_1	
«block» dish MID.spfreceivers 1.receiver pedestal unit 1.receiver / pedestal enclosure 1: Receiver / Pedestal Enclosure	
cost = 3.0 subcost = dish MID.spf receivers_1.receiver pedestal unit_1.receiver / pedestal enclosure_1.subcost[1] totalCost = 0.0	
«block» dish MID.spf receivers_1.receiver pedestal unit_1.receiver / pedestal enclosure_1.subcost[1]: CostRollUpPattern	
«block» dish MID.spf receivers_1.receiver pedestal unit_1.tranceiver module_1: Tranceiver Module	

Lastly, execute!

"We've done a computer simulation of your projected performance in five years. You're fired."

THANK YOU